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1. Introduction

At zero baryon number density, in the two-dimensional plane spanned by the light (up-down
degenerated) quark mass mud and strange quark mass ms, the first order phase transition around the
massless point mud = ms = 0 becomes weaker as the quark masses increase, and eventually turns
into a crossover at some finite quark masses. The boundary between the first order phase transition
region and the crossover region forms a line of second order phase transition, and it is called the
critical end line.

Monte Carlo results on the location of the critical end line is rather confusing at present. For the
staggered fermion action, recent studies with improved action could place only an upper bound on
the critical quark mass, which is very small in the range of m/mphys

ud ≈ 0.1 [1, 2]. This is in contrast
to an earlier work with naive action [3, 4] which observed first order signals up to m/mphys

ud ≈ 2−3.
Furthermore, our recent study with the Wilson-clover fermion action [5] could identify the critical
end point, although the cut-off dependence of the location is rather large.

Another important issue with the QCD phase diagram is how the critical end line extends when
switching on the chemical potential. An interesting result was reported in [6] which explored the
imaginary chemical potential approach with the staggered fermion action. There it was observed
that the critical surface has a negative curvature in the µ direction although the error is large.

Our purpose in this report is to investigate the critical end point at zero and finite density along
the N f = 3 symmetric line. In particular, we investigate the curvature of the critical end point by
using the Wilson-clover fermion action, and study the signature of the curvature.

2. Strategy for locating the critical end point

Let us discuss the strategy to survey the phase space and identify the critical end point for the
Wilson-clover fermion action. If we consider the zero density case with Nf = 3 degenerate quarks,
we only have two bare parameters β and κ (aµ = 0 plane in the left panel in Fig. 1). For a given
temporal lattice size, say NT = 4, by using the peak position of susceptibility or zero of skewness of
quark condensate, one can draw the line of finite temperature transition (the red line in the left panel
in Fig. 1). The transition changes from being of first order to cross over at a second order critical
end point (the blue point in the left panel in Fig. 1). We compute the kurtosis of quark condensate
along the transition line for a set of spatial volumes. The intersection point is identified as the
critical end point [4]. In this way, we can determine the critical end point in the bare parameter
space (βcep,κcep) and this procedure can be repeated to another value of NT.

In order to translate the critical end point in the bare parameter space to that in the physical
parameter space, we measure hadron mass ratios such as the pseudo scalar-vector meson mass
ratio, mPS/mV for the bare parameters (βcep,κcep) by a zero temperature simulation. We do not use
quark masses to avoid the multiplicative renormalization issue. In this way we obtain the phase
structure in physical parameter space whose axes are given by mπ/mρ , mK/mK∗ and µ/T as shown
in the right panel in Fig. 1. When discussing the Nf = 3 case with zero density, we can move along
the diagonal line mπ/mρ = mK/mK∗ on the µ/T = 0 plane. The critical end point in the physical
space is denoted by the blue point in the figure. By repeating the same calculation for increasingly
larger values of NT, we can take the continuum of limit of the critical end point in the physical
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Figure 1: Strategy: The left panel is the phase diagram for bare parameters spanned by β , κ and aµ for
Nf = 3. The right panel is the same phase diagram but depicted for physical parameters spanned by mπ/mρ ,
mK/mK∗ and µ/T .

parameter space,
lim

NT→∞

mPS,cep

mV,cep
(µ/T = 0). (2.1)

When switching on the chemical potential, the basic procedure is the same; one just has to
repeat the same analysis on a different plane with µ 6= 0. Our final goal is to see whether the
critical surface in the right panel in Fig. 1 bends toward the lighter mass or heavier mass direction.

3. Simulation details

We employ the Wilson-clover fermion action with non-perturvatively tuned csw [7] and Iwasaki
gauge action. The number of flavor is three, Nf = 3, and the masses and chemical potentials for
quarks are all degenerate. The phase reweighting method is adopted to handle the complex phase
according to

〈O〉 =
〈OeiNfθ 〉||
〈eiNfθ 〉||

, (3.1)

where 〈...〉|| is the average with phase quenched fermion determinant

Z|| =
∫

[dU ]e−SG |detDw|Nf , (3.2)

and the phase factor is given by

eiθ =
detDw

|detDw|
. (3.3)

Configurations are generated by RHMC with the phase quenched quark determinant. The phase
factor is computed exactly using the analytical reduction technique [8, 9]. The dense matrix ob-
tained by the reduction is computed on GPGPU with LAPACK routines.
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Figure 2: Average of phase reweighting factor as a function of κ . µ/T = aµ ×NT = 0.1× 6 = 0.6. The
sign problem is mild in this region.

The temporal lattice size and the quark chemical potential are fixed to NT = 6 and µa = 0.1,
respectively, and thus µ/T = 0.6. To perform finite size scaling analyses, the spatial volume is
changed from 83 to 123. In order to search for the transition point, we select four β points, namely,
β = 1.70, 1.73, 1.75 and 1.77, and for each β , we vary κ to locate the transition point.

We measure the quark condensate and its higher moments up to fourth order at every 10th
trajectory. In the computation of trace of higher powers of inverse of the lattice Dirac operator,
we adopt the noise method with 20 Gaussian noises for all parameter sets. We have checked that
number is sufficient to control the noise error.

4. Simulation results

4.1 Phase reweighing factor

Figure 2 shows the average value of the phase-reweighting factor as a function of κ . For small
κ and large volumes, the value tends to be close to zero, signaling that the sign problem is becoming
serious. Nevertheless, it stays away from zero beyond statistical error, guaranteeing the viability of
reweighing for our range of lattice volumes.

4.2 Kurtosis intersection

The kurtosis for quark condensate along the transition line is plotted in Fig. 3 as a function of
β . For a first order phase transition, the infinite volume value of kurtosis is K = −2 while for a
crossover it is K = 0, which can be used to diagnose the strength of phase transitions. The figure
then shows that a strong first order phase transition at lower β becomes weaker for higher β .

At the critical end point, the kurtosis is expected to take the same value irrespective of the
spatial volume between -2 and 0. The value depends on the universality class of the second order
phase transition at the critical end point. Using the fitting form [6] inspired by finite size scaling,

K = Kcep +CL1/ν(β −βcep), (4.1)
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Figure 3: Kurtosis intersection for quark condensate. Lines show fitting function in the text. Black pentagon
is the estimated critical end point, βcep = 1.7191(39) where critical value of kurtosis is Kcep = −1.413(53).
Horizontal magenta line shows the critical value of kurtosis for 3-dimensional Ising model, Kcep = −1.396.

where Kcep, C, ν and βcep are fitting parameters, we determine the critical end point βcep =
1.7191(39), the exponent ν = 0.66(13) and the value of kurtosis at the critical end point Kcep =
−1.413(53). The values of the last two parameters are consistent with those of the 3-dimensional
Ising universality class, ν = 0.63 and Kcep = −1.396. On the other hand, the universality class
of 3-dimensional O(2) symmetry with Kcep = −1.758 and that of 3-dimensional O(4) with Kcep =
−1.908 are rejected.

4.3 Susceptibility

In order to confirm the universality class, we check another critical exponent γ/ν . The left
panel of Fig. 4 shows the volume scaling of the susceptibility peak height of quark condensate
together with fitting lines of form

χmax = ALb, (4.2)

where A and b are fit parameters. For lower β the volume sensitivity is strong while it becomes
weaker for higher β . This signifies that the phase transition weakens by creasing β .

The exponent b obtained by the fit is plotted along the transition line as a function of β in the
right panel of Fig. 4. The value b = 1 corresponds to a first order phase transition, while b ≈ 0
shows a crossover. At the critical point where the second order phase transition takes place, the
exponent is expected to be given by b = γ/ν . We observe that the exponent b at the critical end
point estimated by the kurtosis intersection is consistent with the value for the 3-dimensional Ising
model γ/ν = 1.9630.
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Figure 4: Left: Volume scaling of the susceptibility peak height for quark condensate with fitting form
χmax = ALb. Note that both axes are log scale. Right: Exponent b along the transition line. The vertical
black line shows the critical end point βcep = 1.7191(39). The horizontal magenta line shows the value of
γ/ν = 1.9630 for 3-dimensional Ising model.

4.4 Curvature of critical line

In the previous subsection, we have determined the critical end point1 βcep. The last step is
to translate the critical end point to the physical space. The left panel of Fig. 5 shows the hadron
mass ratio, mPS/mV along the transition line. Since the transition line depends on the chemical
potential, two lines are shown in the panel for zero density and for aµ = 0.1. The location of the
critical end point βcep is also shown as vertical lines; for zero density the estimate is taken from
[5]. From this graph, we can read off the value of hadron mass ratio at the critical end point. In the
right panel of Fig. 5, the µ-dependence of the hadron mass ratio at the critical end point is shown.
Even though the hadron mass ratio is determined very precisely with errors of less than 1%, no
significant µ-dependence is observed. This results suggests that the curvature of critical surface is
quite small.

In future we shall try to reduce the errors in the final plot for both zero and finite density using
the multi-ensemble reweighting method. Furthermore we shall explore the region beyond aµ = 0.1
by using the multi-parameter (µ and κ) reweighting method. By reducing the errors and reaching
the higher density region, we hope to answer the question raised in the introduction of the sign of
the curvature of critical surface.

This work is supported in part by the Grants-in-Aid for Scientific Research from the Ministry
of Education, Culture, Sports, Science and Technology (Nos. 23740177, 26800130). We acknowl-
edge the CCS (Center for Computational Sciences in University of Tsukuba) simulation program
for allocating run time of HA-PACS.

1The corresponding κcep is also determined by the transition line in κ-β plane.
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Figure 5: Left: mPS/mV along the transition line. The black (red) points are for zero density (aµ = 0.1)
The black (red) vertical line shows the location of critical end point for zero density (aµ = 0.1). Right: µ-
dependence of critical end point in the physical space (the hadron mass ratio). The curvature of the critical
line is too small to see at this scale.
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