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One of the yet unsolved questions of QCD in the context of the Standard Model is to explain the

strong CP problem. A way to look for a better understanding ofit is to investigate the theory

in the presence of a non-zero topologicalθ -term. On the lattice such a term is complex: hence

it introduces a sign problem which, in general, limits the applicability of standard Monte Carlo

methods. Here we will discuss the approach of complex Langevin dynamics and show results for
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1. Introduction

Non-perturbative effects play a fundamental role in many aspects of QCD, from the phase
diagram to spectroscopy. We know that, although allowed by the symmetries, a term proportional to
the topological charge,Sθ = iθQtop, which would enhance those effects, is suppressed in practice.
The natural instrument to study the effect this topologicalterm would have on physics is lattice
field theory. However, since this term is complex, it prevents the usual Monte Carlo methods to
be effective and generates a sign problem. Here we will discuss the complex Langevin approach to
the problem and show some results at imaginary and realθ .

2. Theory

The Lagrangian we consider, after a Wick rotation, is the usual Yang-Mills action density plus
the topologicalθ -term,

L = LYM − iθq(x), q(x) =
g2

0

64π2 Fa
µν(x)F̃

a
µν(x), (2.1)

whereq(x) is the topological charge density,Fa
µν is the field strength tensor and̃Fa

µν its Hodge dual
tensor,

Fa
µν = ∂µAa

ν −∂νAa
µ +g fabcAb

µAc
ν , F̃a

µν =
1
2

εµνρσFa
ρσ . (2.2)

The last term in the Lagrangian is a pseudo-scalar and, importantly, a total derivative which, when
integrated over the four dimensional volume, corresponds to thetopological charge,

∫

d4xq(x) = Qtop, (2.3)

see e.g. Ref. [1] for a review. To carry out a non-perturbative study on the lattice, one needs to
discretize the theory. Although it might seem that this procedure could destroy the topology of the
configurations, it has been shown that topology emerges alsoon the lattice if the fields are smooth
enough [2]. We adopt the naive discretisation of the topological term [3] in Eq. (2.1),

qL(n) =− 1
24×32π2

±4

∑
µνρσ=±1

ε̃µνρσTr[Πµν(n)Πρσ (n)], (2.4)

whereΠµν is the ordinary plaquette and the sum is over all directions back and forward, with
ε̃−µνρσ = −εµνρσ . While this expression reproduces the correct naive continuum limit, at finite
lattice spacing it mixes with other operators and receives additive and multiplicative renormaliza-
tion [4–6]

qL(n)→ a4ZL(g
2)q(x)+O(a6). (2.5)

To be able to measure the topological content of a configuration, in practice, one has eliminate the
short-range quantum noise introduced by the lattice cutoff, by smoothing the configuration towards
the semi-classical minima of the Yang-Mills action. Only then integer values of the topological
charge are recovered. This can be achieved using smearing, cooling, gradient flow, etc. [6–9]. In
Section 6 we will discuss the application of the gradient flowto complexified configurations in
SL(3,C).
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3. Sign problem and complex Langevin dynamics

Standard Monte Carlo numerical methods use the Boltzman weight of a configuration to assign
a probability weight and to reconstruct a sample representative of the total space of configurations,
in such a way that averages of observables can be computed over this sample. Such procedures
fail when the action is not real and positive, since it is not easy to associate a probability to a
configuration. In the case of the theta term some possibilities to get around this problem are to use
reweighting or to consider imaginaryθ and then analytically continue the results to realθ [10–12].

Our approach is to use complex Langevin dynamics in order to obtain the desired distribution
as the asymptotic distribution of a stochastic process in the complexified configuration space, see
Refs. [13,14] for recent reviews. The sign problem is evadedby this enlargement of the field space.
The stochastic process for links in SU(N) is described by

U(t + ε) = R(U)U(t) , R(U) = exp

(

−i ∑
a

λa
(

εDaS[U ]+
√

εηa
)

)

, (3.1)

where t is the additional Langevin time in which the stochastic process takes place,ε is the
Langevin time step,λa are the generators of the group, andηa is stochastic gaussian noise that
obeys

〈ηa(t,x)〉 = 0, 〈ηa(t,x)ηb(t
′
,x′)〉= 2δabδ (t − t ′)δ (x−x′). (3.2)

As one can see, if the actionSis complex, Eq. (3.1) takes the gauge links into the complex extension
of the gauge group,

U ∈ SL(3,C). (3.3)

The probability distribution corresponding to the complexified stochastic process, formally a solu-
tion of the associatedFokker-Planckequation, is positive and real even when the actionS is not. In
that sense complex Langevin dynamics evades the sign problem and can, potentially, access e.g. the
whole temperature-θ phase diagram. While for real Langevin dynamics one can analytically prove
convergence of theFokker-Planckequation to the correct distribution “a priori” [15], for complex
Langevin such a proof relies on “a posteriori” checks of criteria of correctness. These criteria in-
volve the distribution of observables to belocalisedin the complex direction; when satisfied then
a proof of correct convergence also exist for complex Langevin dynamic, provided that the drift is
holomorphic [16,17]. For non-holomorphic drifts additional care is required [18].

4. Complex Langevin dynamics at imaginaryθ

In order for complex Langevin dynamics to converge to the correct result, it is necessary to use
gauge cooling [14, 19, 20], i.e. to control the exploration of the complexified configuration space.
In practice gauge cooling becomes insufficient when the gauge couplingβ . 5.7 in the case of
pure SU(3) gauge theories. This threshold depends on the presence of fermions [21] but not on the
lattice volume or, in this case, on the value ofθ . In fact, our way to test the efficiency of gauge
cooling, and Langevin simulations in general, is to run the same procedure atθ = 0 or for imaginary
θ ; even though the action is real, the Langevin approach will still attempt to explore the enlarged
field space and gauge cooling is essential to constrain this (of course one could also occasionally
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Figure 1: Distribution of Qtop at imaginaryθL = −20i (left) and θL = +20i (right) on a 124 lattice at
β = 6, obtained by generating configurations using complex Langevin dynamics with gauge cooling and
subsequently applying gradient flow to recover (close to) integer charges.

re-unitarise the links but this is not possible at realθ ). Hence it make sense to benchmark complex
Langevin and gauge cooling at imaginaryθ .

In Fig. 1 we show the result of such a test, at unrenormalisedθL = ±20i, andβ = 6 on a
124 lattice. Here configurations are generated using complex Langevin dynamics including gauge
cooling to control the process. We subsequently use gradient flow to smoothing those and recover
the topological content. We observe the expected response as the sign ofθL is flipped. We have also
made a comparison with results obtained using the standard HMC algorithm and found agreement.

5. Complex Langevin dynamics at realθ

Having verified our approach at imaginaryθ , we now present some results for realθ . Writing
the partition function as

Z(θL) =

∫

DU e−SYM eiθLQ = e−Ω f (θL)
, (5.1)

whereΩ is the lattice four-volume andf (θL) the free energy density, it is straightforward to predict
the behaviour of the topological chargeQ for real and imaginaryθL as

−i〈Q〉θL =−∂ lnZ
∂θL

= ΩχLθL
(

1+2b2θ2
L +3b4θ4

L + . . .

)

, (5.2)

−〈Q〉θI =
∂ lnZ
∂θI

= ΩχLθI
(

1−2b2θ2
I +3b4θ4

I + . . .

)

, (5.3)

whereθI = −iθL and χL is the (unrenormalised) topological susceptibility. Hereand belowθL

always denotes the unrenormalisedθ parameter in the action andQ denotes the topological charge
obtained directly from the lattice simulations, see Eq. (2.4), i.e. without smoothening of the gauge
fields. Hence the coefficientsbi in the expansion are also unrenormalised.

In Fig. 2 (left) we show the dependence of〈Q〉 on both imaginary and realθL, at β = 6.1
on a 64 lattice. We observe an almost perfect linear increase, witha deviation between the real
and imaginary lines only visible at the largerθL values. Independent fits to both data sets yields
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Figure 2: Left: Dependence of〈Q〉 on the unrenormalisedθL, both real and imaginary, atβ = 6.1. Right:
Dependence on realθL at β = 5.8,5.9,6.1.
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Figure 3: Dependence of the linear term,ΩχL, onβ .

agreement with the analytical prediction, i.e. a common linear term and small third-order term with
opposite sign. Explicitly,

y(θL) = ΩχLθL(1±2b2θ2
L ), ΩχL = 0.026, b2 ∼ 10−5

. (5.4)

Repeating this for otherβ values we find theθL dependence shown in Fig. 2 (right) and a depen-
dence of the linear coefficientΩχL onβ as in Fig. 3. As expected, the susceptibility decreases with
increasing coupling (decreasing lattice spacing or increasing temperature).

6. Gradient flow on SL(3,C)

As specified in Sec. 2, all the topological operators on the lattice need to be renormalised due
to short range quantum fluctuations that couple with the operator (2.3). The non-perturbative way
to do that involves cooling the configurations towards the local minima of the Yang-Mills action. In
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Figure 4: Typical behaviour of the real and imaginary parts of the lattice topological chargeQ and the action
under the gradient flow for an SL(3,C) configuration.

Sec. 3 we mentioned, however, that the gauge group complex Langevin dynamics takes place in is
not SU(3) but instead SL(3,C). The latter is a non-compact group with unstable classical directions
in the noncompact direction, and therefore it is not obviouswhether cooling/smoothening will have
the same effect as in SU(3).

Since the gradient flow is just Langevin dynamics without noise (i.e. “classical evolution”), it
is straightforward to implement the procedure in SL(3,C). We have done various tests but have not
yet gained a satisfactory understanding. A typical exampleis given in Fig. 6, where the gradient
flow evolution of the chargeQ and the actionSare given. We observe a plateau in the real part of
Q, but with values that average to zero in the ensemble. This isnot surprising, since the expectation
value ofQ should be purely imaginary, see Eq. (5.2). However, the imaginary part ofQ flows to
zero quickly (which is not surprising either). Perhaps, this conundrum reflects the fact that complex
Langevin dynamics works on the level of expectation values of holomorphic observables and not
on the level of individual SL(3,C) configurations, as manipulating those violates holomorphicity.

7. Summary

We have shown that we have good control of the lattice theory for θ both real and imaginary.
The criteria for the correctness of complex Langevin dynamics are satisfied forβ & 5.8 and the ob-
servables behave in a sensible way aroundθ = 0. We demonstrated that the behaviour of the lattice
topological charge follows nicely the prediction based on analytic continuation from imaginaryθ .
As an application we studied the dependence of the (unrenormalised) topological susceptibilityχL

onβ . We conclude that complex Langevin dynamics correctly simulates the lattice theory, in terms
of the bare parameters and lattice operators.

The next step is to express our findings in terms of the renormalised θ = ZLθL, where the
renormalisation factor can be determined atθ = 0. The challenge ahead is to find a way to obtain
information on renormalised topological observables fromthe Langevin dynamics in SL(3,C).
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