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Solution of simple toy models via thimble
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The sign problem prevents lattice simulations of many models of physical interest. One proposal
for evading such problems is the thimble regularization. In this proceeding we discuss its applica-
tion to the φ 4 0-dimensional integral, which is a toy model that has been studied for many years as
a prototype of complex-valued action and raises several problems within a treatment via complex
Langevin; this model can be successfully solved with the thimble approach, though it exhibits a
very non trivial structure. We discuss the details of the thimble structure in this model along with
three different algorithms that we have used to get precise numerical results.

The 32nd International Symposium on Lattice Field Theory
23-28 June, 2014
Columbia University New York, NY

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:giovanni.eruzzi@pr.infn.it
mailto:francesco.direnzo@pr.infn.it


P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
2
0
2

Solution of simple toy models via thimble regularization of lattice field theory Giovanni Eruzzi

1. Motivation

The sign problem, which affects many field theories at finite chemical potential, is due to
the presence of complex terms in the action; this makes it impossible to perform Monte Carlo
simulations using exp(−S) as a probability weight. One of the approaches one can employ in
this case is reweighting, but this cannot be used in all regions in parameter space because of the
oscillatory part of the action SI = ℑ(S) scaling exponentially with the volume of the system. The
main motivation behind the thimble approach is that integrating along the thimble automatically
keeps SI constant, thus removing the sign problem completely. In the framework of the thimble
approach, it is interesting to study 0-dimensional field theories, that is complex integrals; these
integrals, although simple as well as analytically computable, feature a non-trivial thimble structure
and are often problematic for complex Langevin simulations. The main topic of this contribution
will be a review of complex Morse theory applied to the one-dimensional case and a detailed study
of the 0-dimensional φ 4 toy model. We show that we can do Monte Carlo simulations for this
model and the sign problem is completely under control.

2. Picard-Lefschetz (complex Morse) theory: a primer for 0-dimensional toy models

In this brief introduction to complex Morse theory (also known as Picard-Lefschetz theory), we
focus on the fundamental aspects which are relevant for the present discussion of the 0-dimensional
φ 4 model. We follow [1] for the notation, keeping in mind that the formulas can be easily extended
to the case of quantum field theories with many degrees of freedom. Let us say we have some action
S and we want to calculate the expectation value of some observable which is a (holomorphic)
function f of the only degree of freedom of the 0-dimensional theory, the real “field” φ . The action
is a complex holomorphic function of this field and we set S = SR + iSI , while the computation of
the expectation value is carried on along a given integration cycle C . In our model, we simply set
C = R and we are interested in correlators such as

〈φ n〉= 1
Z

∫
R

dφ φ
ne−S(φ) (2.1)

with the partition function given by

Z =
∫
R

dφ e−S(φ) (2.2)

Morse theory states that integrals such as that in (2.1) can be decomposed as a sum of integrals
along Lefschetz thimbles Jσ associated with the critical points of the action in the complex plane
(i.e. the field has been complexified)

〈φ n〉= 1
Z ∑

σ

mσ

∫
Jσ

dφ φ
ne−S(φ) (2.3)

where we call the complexified field φ = x+ i y. The mσ are integer coefficients with sign and
their value is thoroughly discussed below for the φ 4 0-dimensional model. Each of these integrals is
guaranteed to be convergent and they also share the striking property that along them the imaginary
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part of the action remains constant, so the sign problem due to the imaginary part of the action is
avoided. Now let us call {φσ} the set of all the action critical points (which are assumed to be
non-degenerate). As SI stays constant along the thimbles, formula (2.3) can be rephrased as

〈φ n〉= 1
Z ∑

σ

mσ e−iSI(φσ )
∫

Jσ

dφ φ
ne−SR(φ) (2.4)

which renders the integration over a real Boltzmann weight manifest. Let us now see how
integration along the thimbles is implemented. The stable thimble Jσ associated with the critical
point φσ is defined as the curve in the φ complex plane given by those solutions of the equations of
steepest ascent, that is {

dx
dt = + ∂SR(x,y)

∂x
dy
dt = + ∂SR(x,y)

∂y

(2.5)

that start from the critical point φσ for t→−∞. To recover these curves, in practice one inte-
grates the equations (2.5) starting near the critical point φσ for an arbitrarily long time t, provided
that the starting direction is choosen correctly: the direction (in the xy plane) of the thimble Jσ

near the critical point is given by the eigenvector of positive eigenvalue of the hessian matrix of
SR (x,y) computed at the critical point (by holomorphicity the hessian has two eigenvalues opposite
in sign). By using the steepest ascent equations and the chain rule, it is easy to show that SR always
increases along the flow, so our integration, as t→+∞, brings exp

(
−SR

)
to 0, thus ensuring con-

vergence of the integrals along the thimble. Associated with a given critical point φσ there is also
an unstable thimble Kσ , which can be recovered by the same procedure described above, but with
the eigenvector of the hessian of SR with negative eigenvalue as its tangent direction at the critical
point (as well as the sign in (2.5) reversed). One is interested in the unstable thimble because the
coefficients mσ count the intersection of such thimbles with the original domain of integration,
which in our case is the real axis (the sign ambiguity is not resolved by just this definition, but it
can be deduced by means of other considerations). We have already pointed out that SI is constant
along the thimble. However, one has to keep in mind the line element of the complex integral, that
is

z′ (t) =
∣∣z′ (t)∣∣eiφ(t) (2.6)

We call φ (t) the “residual phase” and, while it is trivial to compute for 0-dimensional models,
in principle it could become a source of a new sign problem for a realistic field theory; nevertheless
we expect it to be quite smooth and there is already numerical evidence for this (see [2, 3]).

3. The 0-dimensional φ 4 theory

We now apply the previous considerations to the study of the action

S (φ) =
1
2

σφ
2 +

1
4

λφ
4 (3.1)

with λ ∈R+ and σ = σR + iσI ∈C. This toy model was initially proposed as a test for complex
Langevin simulations in [4]. For a recent and thorough study of complex Langevin dynamics of
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this model, the reader can refer to [5]. One peculiar feature of this model is that complex Langevin
simulations display divergences for 〈φ n〉 with n > 4 in a certain region of parameters. The thimble
approach gives no divergences for any value of the parameters. However we will see how the sign
of σR affects the values of mσ , thus rendering the thimble structure quite non-trivial.

Now we complexify the field by setting φ = x+ i y. We get

SR =
1
2
[
σR
(
x2− y2)−2σIxy

]
+

1
4

λ
(
x4 + y4−6x2y2)

SI =
1
2
[
σI
(
x2− y2)+2σRxy

]
+λ

(
x3y− xy3)

from which the steepest ascent equations follow

∂SR

∂x
= σRx−σIy+λx3−3λxy2 (3.2)

∂SR

∂y
= −σRy−σIx+λy3−3λx2y (3.3)

The hessian is built from the second derivatives of SR and takes the form

H (x,y) =

(
σR +3λx2−3λy2 −σI−6λxy
−σI−6λxy −σR−3λx2 +3λy2

)
(3.4)

There are 3 critical points: φ0 = 0 and φ± = ±
√
−σ

λ
(which are the two, complex valued,

“Higgs vacua”). As for the mσ , the situation is quite different between the 3 cases σR > 0, σR = 0
and σR < 0: in each case we computed the stable and unstable thimble associated with each critical
point with the procedure described above. Figures 1, 2 and 3 show the results for the three cases.

Figure 1: Stable and unstable thimbles associated with the three critical points for σ = +0.5+0.75 i,λ = 2.

From Figure 1, we see that for σR > 0 the unstable thimbles associated to the Higgs vacua
do not intersect the real axis and therefore these points do not contribute to the integrals, that is
m± = 0. So, we must have m0 = 1 and in fact with this assumption and by integrating along the
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Figure 2: Stable and unstable thimbles associated with the three critical points for σ = 0.75 i,λ = 2.

Figure 3: Stable and unstable thimbles associated with the three critical points for σ =−0.5+0.75 i,λ = 2.

stable thimble attached to φ0, we recover the correct results for, say, Z =
∫

e−S (the integration can
be easily carried on along the real axis both analytically and numerically, as the real part of the
action grows very large with x and oscillations are damped out). By decreasing σR we can reach
σR = 0: this situation, called “Stokes phenomenon”, is depicted in Figure 2; for purely imaginary
values of σ , the stable thimble connected to the critical point φ0 ends up into the Higgs vacua φ±,
so the action does not go to infinity as expected. The decomposition (2.3) does not hold in this case.
The case σR < 0 depicted in Figure 3 is a totally different matter. Now we see that the unstable
thimbles connected to the Higgs vacua do intersect the real axis and therefore m± 6= 0, as well as
m0 6= 0. The correct combination which recovers the expected results for the integrals turns out to
be m0 =−1 and m± = +1. These values were found by imposing continuity in the integral while
crossing σR = 0, which is guaranteed by the holomorphicity of the original action in the (complex)
σ parameter.
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4. Monte Carlo simulations

As pointed out before, we performed Monte Carlo simulation on the Lefschetz thimbles for this
model. We tested different approaches: a Metropolis-like algorithm (described in [6]), a Langevin-
like thimble Monte Carlo, that is the Aurora algorithm described in [7] (with the obvious trick
that the tangent space to the thimble is locally given by ∇SR). We also applied a sort of “ideal
sampling” along the thimble ([8]). All these methods lead to correct results for the observables
〈φ n〉. In Figure 4, for example, we see some results of our Metropolis simulations for computing〈
φ 8
〉

(ε is a technical parameter of the simulation - the smaller its value, the better the thimble is
covered). In Figure 5 we see that we are able to cover the thimble with a stochastic integration
process as well as we want.

Figure 4: Metropolis Monte Carlo results for
〈
φ 8
〉

with different values of σR.

5. Conclusions

We have discussed complex Morse theory applied to 0-dimensional toy models (which turn out
to be extremely interesting in this respect), in particular to a case where complex Langevin failed to
provide correct results in some regions of parameter space. We have also seen how different Monte
Carlo can be devised to do importance sampling over Lefschetz thimbles, providing correct results.
A generalization of what we have shown here to a general field theory is therefore a promising way
to solve the sign problem (see [7]).
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Figure 5: Thimble covering with Metropolis Monte Carlo results for σ = +0.5+0.75 i,λ = 2.
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