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1. HD-QCD as basis for a systematic analytic approximation to QCD

The QCD grand canonical partition function fornf = 1 flavour of Wilson fermions is:

Z =
∫

DU ρ , ρ = e−S = e−SYM detM (1.1)

M = 1−2κ
3

∑
i=1

(

Γ+iUx,iTi +Γ−iU
†
x,iT−i

)

−2κγ
(

eµΓ+4Ux,4T4+e−µΓ−4U†
x,4T−4

)

(1.2)

with Γ±µ = 1
2(1± γµ), T: lattice translations,κ : hopping parameter,µ chemical potential,γ :

anisotropy parameter. The temperature is introduced asaT = γ
Nτ

(γ = 1 below).
HD-QCD [1, 2, 3] relies on the double limit

κ → 0, µ → ∞, ζ = 2κ eµ : fixed. (1.3)

In the 0-th order inκ (LO) only the Polyakov loopsP survive in the loop expansion for the
fermionic deteminant which becomes a product of local terms

detM0(µ) =
(

1+C3)2
(

1+C′3
)2

∏
~x

(

1+aP~x+bP′
~x

)2(
1+ ãP′

~x+ b̃P~x
)2

(1.4)

a= 3C/(1+C3), b= 3C2/(1+C3), ã= 3C′/(1+C′3), b̃= 3C′2/(1+C′3) (1.5)

C= (2κeµ)Nτ , C′ =
(

2κe−µ)Nτ , P=
1
3

tr∏
t

Ut , P′ =
1
3

tr∏
t

U−1
t (1.6)

where we also introduced the non-dominant factors from the inverse Polyakov loopsP′ to preserve
the detM(µ) = [detM(−µ)]∗ symmetry. The LO describes gluonic interactions in a background
of static charges. Note thata,b have maxima of 22/3 at µ =∓ 1

3Nτ
− ln(2κ).
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Figure 1: HD - QCD: LO and NLO.

We can go beyond the static limit (LO) with successive NqLO to approximate full QCD using
the analytic hopping expansion.

For q= 1 the NLO can be defined in the loop expansion using decorated Polyakov loops, for
explicit formulae see [4, 5]. The determinant still factorizes, but the quarks have some mobility.
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Higher NqLO become increasingly cumbersome in the loop expansion, however, because of the
combinatorics. The effective expansion parameter isNτκ .

Alternatively we can expand to higher orders "algebraically" [6], see also [7]. In the following
we use two expansions, called theκ- and theκs-expansion. To define them one separates temporal
and spatial hoppings in the fermionic matrix M:

M = 1−κQ = 1−R−κsS, R= κQt , S= Qs (1.7)

κ−expansion : detM= exp

{

−∑
n

κn

n
Qn

}

(1.8)

κs−expansion : detM= detM0exp

{

−∑
n

κn
s

n

(

S
1−R

)n}

(1.9)

The drifts for CLE in NqLO can be systematically derived and used for simulations with the full
YM action to any desired orderq [6]. In the calculations one keepsκs = κ .

HD-QCD has been used as a model in LO and NLO to study the phase diagram and other
properties with the full YM action [4, 5, 8] and in strong coupling also to higher orders [9].

2. Simulation method

2.1 Complex Langevin Simulation

The Complex Langevin Equation (CLE) has the potential to simulate lattice models with a
complex action and for which usual importance sampling fails. To develop it to a reliable method
is both rewarding and tough.

The LE is a stochastic process in which the updating of the variables is achieved by addition
of a drift term (or "force") and a suitably normalized randomnoise. For a complex action the drift
is also complex and this automatically provides an imaginary part for the field. This implies setting
up the problem in the complexification of the original manifold Rn −→Cn or SU(n)−→ SL(n,C).
The CLE then amounts to two related, real LE with independentnoise terms - here in compact form
for just one variablez= x+ iy and withK =−∂zS(z):

δz(t) = K(z)δ t +
√

NRηR+ i
√

NI ηI

〈ηR〉 = 〈ηI 〉= 0, 〈ηRηI 〉= 0, 〈η2
R〉= 〈η2

I 〉= 2δ t , NR−NI = 1

In the simulations we shall takeNI = 0. The probability distributionP(x,y; t) realized in the process
evolves according to a real Fokker-Planck equation:

∂tP(x,y, t) = LTP(x,y, t) , L = (NR∂x+ReK(z))∂x+(NI ∂x+ ImK(z))∂y (2.1)

One can also define a complex distributionρ(x, t)

∂tρ(x, t) = LT
0 ρ(x, t) , L0 = (∂x+K(x))∂x

with the asymptotic solutionρ(x)≃ exp(−S(x)) and formally prove for the observablesO(z)
∫

O(x+ iy)P(x,y; t)dxdy=
∫

O(x)ρ(x; t)dx.
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As for any method the proof of convergence depends on some conditions, for CLE these include:

- rapid decay ofP(x,y, t) in y [10] and

- holomorphy of the drift and of the observables.

There are, moreover, a number of numerical problems, such asrunaways. Many of them are
due to the amplification of numerical imprecisons by unstable modes in the drift dynamics. For
further discussion see, e.g., [11] and the references therein.

To deal with these problems one can use the freedom in definingthe process for a given action
and the symmetries of the latter. For gauge theories we set upa method ("gauge cooling") to obtain
a narrowy−distribution. Together with using adaptive step size this also eliminates runaways and
divergences triggered by numerical imprecisions. For a review see [12].

Zeroes in the original measureρ(z) lead to a meromorphic drift. The poles in the drift can
cause wrong convergence of the process, as shown in nontrivial, soluble models [13]. This problem
is presently under study. In the cases of physical interest the effects due to poles do not appear
quantitatively relevant, however a systematic understanding is still missing.

For QCD atµ 6= 0 the method has been defined in [14] and applied, e.g., in [8, 9, 15, 16].

2.2 Reweighting

For completeness we shall briefly describe the reweighting method (RW) also applied in this
study. It has been used in the HD-QCD context before [5] but without the second factor in (1.4)
(which is≃ 1 at largeµ but is relevant if we want to connect to the smallµ region).

We split the Boltzman factor in (1.1) and calculate the expectation values by reweighting

ρ ≡ e−SYM detM= Hw, H > 0, 〈O〉ρ =
〈Ow〉H

〈w〉H
(2.2)

H = e−SYM+CtrP+C′ trP′
, w = e−CtrP−C′ trP′

detM (2.3)

by taking into the updating factor H part of the LO determinant eq. (1.4). This H allows a fast
updating in producing the ensemble, e.g. in maximal gauge, at least to LO and NLO, since the
additional terms can just be added to the staples and used in heat bath updating.

3. Tests and preliminary results

3.1 Simulations

As previously discussed [8] for the present CLE simulationsa reliability lower threshold at
β ≃ 5.7 appears to hold. Largeβ are unproblematic, largeµ and largeNτ are under study.

With RW we can go to lowerβ but the signal/noise ratio strongly decreases. Moreover RW
cannot reach large chemical potentialµ ≃ 1 where the sign problem becomes acute.

In the following we work atβ = 5.8 and 5.9 using 2 degenerate flavours of Wilson fermions,
nf = 2. We useκ = 0.12 for which theκ expansion is expected to converge. It turns out that for
higher values forκ HD-QCD may not lead to a well controlled approximation for QCD. We use
Nτ = 8,10,12,16 except for the comparison with full QCD where we use a lattice of 44. The full
QCD data are obtained by CLE [15], the HD-QCD data by CLE and RW.
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3.2 Approaching full QCD in the NqLO series of HD-QCD

Since even higher orders NqLO of HD-QCD are significantly easier to simulate than the full
theory we want to estimate how well we approximate the latterin this way.

The results in Fig. 2 are obtained with CLE. Forκ = 0.12 theκs approximation appears
reasonable forq≥ 8, which is still much easier to simulate than full QCD (whiletheκ-expansion
is less reliable). Forκ = 0.14 some quantities need largerq or do not converge at all. We conclude
that atκ = 0.12 we can obtain a good approximation, smaller masses need further study.
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Figure 2: Convergence checks for the NqLO κ- andκs-expansion on a 44 lattice,nf = 2 atβ = 5.9, µ = 0.7
(left) andµ = 1.1 (right), vsq. Top: Chiral condensate atκ = 0.12. Middle: baryonic density atκ = 0.12.
Bottom: spatial plaquette atκ = 0.12 (left) and 0.14 (right).
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3.3 Baryonic density at ”low" temperature.

Here we work on lattices withNs ≥ 10 andNτ = 8,10,12,16 at atβ = 5.8. Although we do
not aim at physical results at this stage, we can get a rough idea of the physical parameters from
the scale estimate obtained by gradient flow for HD-QCD in LO.This giveslt of approximately
1.12,1.40,1.68,2.24 fm, hence temperatures of≃ 180, · · · ,90 MeV. The quarks are very heavy.

The low µ region can be scanned by RW in first NLO. The data in the Fig. 3 are obtained
with Ns= 10 . Due to the small aspect ratio we have finite spatial size effects. Here we show only
the baryonic density, the Polyakov loop plots have a similarbehaviour. For the density we show
separately the contributions from straight and decorated Polyakov loops, but notice that this is an
NLO calculation, therefore also the former are not the same as in a LO calculation.
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Figure 3: Baryon density from RW atβ = 5,8, nf = 2, NLO κ = 0.12Top: T∼ 180 and 145 MeV.Bottom:
T ∼ 120 and 90 MeV. Shown are also the contributions to the density from the straight and decorated
Polyakov loops separately.

We observe a silver blaze region and an onset of the baryonic density at values ofµ increasing
with decreasingT. Notice that this is not the hadron-plasma transition which, at least in LO, takes
place at much largerµ [16]. Moreover we notice a seizable structure at the onset which seems to
indicate the presence of steps. It is tempting to see here a hint for a nuclear matter transition at a
lower temperature, not attained yet in these simulations, but the effects of which would propagate
in the phase diagram. Since the temperature favours the creation of charges the dependence of the
onset onT appears realistic. For further results from CLE see [6] and [16, 17].
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4. Summary

We present here a program to extend the HD-QCD to higher orders, approaching in this way
QCD within a controlable approximation. This program appears feasible, at least for not too small
(bare) quark masses. It is based on NqLO CLE simulations atβ > 5.7 and for variousµ and lattice
sizes andq significantly larger than 1. Atµ below the hadron/plasma transition preliminary RW
calculations in NLO indicate interesting effects at the onset of the baryonic density. To quantify
these observations we need, however, more statistics and data from CLE which are not restricted
in µ and can go to largerκ orders.
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