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1. HD-QCD as basis for a systematic analytic approximationa QCD

The QCD grand canonical partition function for = 1 flavour of Wilson fermions is:

Z= /.DU p, p=e S=e SMdetM (1.1)

3
M = 1-2k Zi (I’HUXJTi + r,iUXTiT,i) — 2Ky(e“|'+4UX74T4—|— e—ur,4U;4T,4) (1.2)
Z :
with 'y = %(1i yu), T: lattice translationsk: hopping parameter: chemical potentialy:
anisotropy parameter. The temperature is introducedTas- N—VT (y = 1 below).
HD-QCD [1, 2, 3] relies on the double limit

K—0, u—o, {=2keH:fixed. (1.3)

In the O-th order ink (LO) only the Polyakov loop$® survive in the loop expansion for the
fermionic deteminant which becomes a product of local terms

detM(u) = (1+C3)° <1+c’3)2|'| (1+aR+bR)’(1+&R,+bR)? (1.4)
X

a=3C/(1+C%,b=3C?/(1+C%),a=3C"/(1+C?),b=3C?/(1+C?% (1.5
P—=

_ pNe —p\Ne 1 1 -1
C=(2ke!)™, C'=(2ke H)™, 3trDUt, P = 3tr|:|Ut (1.6)
where we also introduced the non-dominant factors fromrberse Polyakov loopR’ to preserve
the detMu) = [detM(—p)]* symmetry. The LO describes gluonic interactions in a bamkgd
of static charges. Note thatb have maxima of 23 at i = F 55 —In(2k).

T=1/Na

Figure 1: HD - QCD: LO and NLO.

We can go beyond the static limit (LO) with successiv&® to approximate full QCD using
the analytic hopping expansion.

Forq= 1 the NLO can be defined in the loop expansion using decoraibekv loops, for
explicit formulae see [4, 5]. The determinant still facres, but the quarks have some mobility.
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Higher N'LO become increasingly cumbersome in the loop expansioneber, because of the
combinatorics. The effective expansion paramet®\;is.

Alternatively we can expand to higher orders "algebraytdb], see also [7]. In the following
we use two expansions, called theand theks-expansion. To define them one separates temporal
and spatial hoppings in the fermionic matrix M:

M=1-kQ=1-R-kS R=kQ, S=0Qs (1.7)

K—expansion : detM-= exp{ - ; KFnQ”} (1.8)

Ks—expansion : detM:= detMOexp{— > ks <i> n} (1.9)
= N \1-R

The drifts for CLE in NILO can be systematically derived and used for simulatiorik thie full
YM action to any desired ordey[6]. In the calculations one keepg = K.

HD-QCD has been used as a model in LO and NLO to study the phageach and other
properties with the full YM action [4, 5, 8] and in strong cding also to higher orders [9].

2. Simulation method

2.1 Complex Langevin Simulation

The Complex Langevin Equation (CLE) has the potential toutite lattice models with a
complex action and for which usual importance samplingfailo develop it to a reliable method
is both rewarding and tough.

The LE is a stochastic process in which the updating of thebkas is achieved by addition
of a drift term (or "force™) and a suitably normalized randopise. For a complex action the drift
is also complex and this automatically provides an imagipart for the field. This implies setting
up the problem in the complexification of the original mafdf&" — C" or SU(n) — SL(n,C).
The CLE then amounts to two related, real LE with independeiste terms - here in compact form
for just one variable = x+iy and withK = —9,52):

dz(t) = K(2) 8t ++v/Nrnr+ivNi
(NR) = (M) =0, (nrm) =0, (nR)=(nf)=25t, Nr—N =1

In the simulations we shall taktd = 0. The probability distributiodP(x,y;t) realized in the process
evolves according to a real Fokker-Planck equation:

aP(x,y,t) =LTP(x,y;t), L= (Nrdx+ReK(2))dx+ (Nidx+ImK(2))dy (2.1)
One can also define a complex distributjofx,t)
ap(xt) =Lip(xt), Lo= (d+K(x)dx

with the asymptotic solutiop(x) ~ exp(—S(x)) and formally prove for the observabl€xz)

/O(x+iy)P(x,y;t)dxdy:/O(x)p(x;t)dx
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As for any method the proof of convergence depends on sontitiwors, for CLE these include:

- rapid decay oP(x,y,t) in y [10] and

- holomorphy of the drift and of the observables.

There are, moreover, a number of numerical problems, suchnasvays. Many of them are
due to the amplification of numerical imprecisons by ungtahbdes in the drift dynamics. For
further discussion see, e.g., [11] and the referencesithere

To deal with these problems one can use the freedom in defimingrocess for a given action
and the symmetries of the latter. For gauge theories we ssetgthod ("gauge cooling") to obtain
a narrowy—distribution. Together with using adaptive step size tés @liminates runaways and
divergences triggered by numerical imprecisions. For evegee [12].

Zeroes in the original measupz) lead to a meromorphic drift. The poles in the drift can
cause wrong convergence of the process, as shown in nahtsgluble models [13]. This problem
is presently under study. In the cases of physical inteteseffects due to poles do not appear
guantitatively relevant, however a systematic understania still missing.

For QCD atu # 0 the method has been defined in [14] and applied, e.g., in [B5,916].

2.2 Reweighting

For completeness we shall briefly describe the reweightiathod (RW) also applied in this
study. It has been used in the HD-QCD context before [5] bthaut the second factor in (1.4)
(which is~ 1 at largeu but is relevant if we want to connect to the smaliegion).

We split the Boltzman factor in (1.1) and calculate the exgu#mn values by reweighting

— A <OW>H
p=e >™detM=Hw, H>0  (O),= W (2.2)
H — e—SYM +C'[I’P+C"[I’P’7 W= e—CtI’P—C’trP’ det M (23)

by taking into the updating factor H part of the LO determinaq. (1.4). This H allows a fast
updating in producing the ensemble, e.g. in maximal gaugkeasat to LO and NLO, since the
additional terms can just be added to the staples and usesirbhth updating.

3. Tests and preliminary results

3.1 Simulations

As previously discussed [8] for the present CLE simulatian®liability lower threshold at
B ~ 5.7 appears to hold. Largé are unproblematic, large and largeN; are under study.

With RW we can go to lowef} but the signal/noise ratio strongly decreases. Moreover RW
cannot reach large chemical potengiet~ 1 where the sign problem becomes acute.

In the following we work a8 = 5.8 and 59 using 2 degenerate flavours of Wilson fermions,
ns = 2. We usex = 0.12 for which thek expansion is expected to converge. It turns out that for
higher values fox HD-QCD may not lead to a well controlled approximation for QGNe use
N; = 8,10,12,16 except for the comparison with full QCD where we use adattif 4. The full
QCD data are obtained by CLE [15], the HD-QCD data by CLE and RW
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3.2 Approaching full QCD in the N9LO series of HD-QCD

Since even higher ordersNO of HD-QCD are significantly easier to simulate than thé ful
theory we want to estimate how well we approximate the latténis way.

The results in Fig. 2 are obtained with CLE. Ror= 0.12 the kg approximation appears
reasonable fog > 8, which is still much easier to simulate than full QCD (white k-expansion
is less reliable). Fok = 0.14 some quantities need larggor do not converge at all. We conclude

that atk = 0.12 we can obtain a good approximation, smaller masses nebeéifstudy.
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Figure 2: Convergence checks for thélND k- andks-expansion on a¥attice,ns =2 at = 5.9, u = 0.7
(left) andpu = 1.1 (right), vsg. Top Chiral condensate at = 0.12. Middle: baryonic density ak = 0.12.
Bottom spatial plaquette at = 0.12 (eft) and Q14 (right).
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3.3 Baryonic density at "low" temperature.

Here we work on lattices withls > 10 andN; = 8,10,12 16 at at = 5.8. Although we do
not aim at physical results at this stage, we can get a rouggh ofl the physical parameters from
the scale estimate obtained by gradient flow for HD-QCD in @@is givesl; of approximately
1.12,1.40,1.68,2.24 fm, hence temperatures ©f180 - --,90 MeV. The quarks are very heavy.

The low u region can be scanned by RW in first NLO. The data in the Fig.e3ohtained
with Ns = 10 . Due to the small aspect ratio we have finite spatial sieetst Here we show only
the baryonic density, the Polyakov loop plots have a sinfiktraviour. For the density we show
separately the contributions from straight and decoratdgaRov loops, but notice that this is an
NLO calculation, therefore also the former are not the sasria a LO calculation.
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Figure 3: Baryon density from RW g8 =5,8,ns =2, NLOK = 0.12Top: T ~ 180 and 145 Me\Bottom
T ~ 120 and 90 MeV. Shown are also the contributions to the defigim the straight and decorated
Polyakov loops separately.

We observe a silver blaze region and an onset of the baryenisity at values oft increasing
with decreasing’. Notice that this is not the hadron-plasma transition whatHeast in LO, takes
place at much largem [16]. Moreover we notice a seizable structure at the onsétiwéeems to
indicate the presence of steps. It is tempting to see hematddnia nuclear matter transition at a
lower temperature, not attained yet in these simulatioasthe effects of which would propagate
in the phase diagram. Since the temperature favours thiéarred charges the dependence of the
onset onl appears realistic. For further results from CLE see [6] drid 17].
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4. Summary

We present here a program to extend the HD-QCD to higher girdpproaching in this way
QCD within a controlable approximation. This program appdeasible, at least for not too small
(bare) quark masses. Itis based dii.® CLE simulations apf > 5.7 and for variousu and lattice
sizes andj significantly larger than 1. At below the hadron/plasma transition preliminary RW
calculations in NLO indicate interesting effects at theatraf the baryonic density. To quantify
these observations we need, however, more statistics dadrden CLE which are not restricted
in u and can go to largex orders.
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