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We study the axial U(1)A symmetry of Nf = 2 QCD at finite temperature using the Dirac eigen-
value spectrum. The gauge configurations are generated employing the Möbius domain-wall
fermion action on 163×8 and 323×8 lattices. The physical spatial size of these lattices is around
2 fm and 4 fm, respectively, and the simulated temperature is around 200 MeV, which is slightly
above the critical temperature of the chiral phase transition. Although the Möbius domain-wall
Dirac operator is expected to have a good chiral symmetry and our data actually show small values
of the residual mass, we observe significant violation of the Ginsparg-Wilson relation for the low-
lying eigenmodes of the Möbius domain-wall Dirac operator. Using the reweighting technique,
we compute the overlap-Dirac operator spectrum on the same set of configurations and find a sig-
nificant difference of the spectrum between the two Dirac operators for the low-lying eigenvalues.
The overlap-Dirac spectrum shows a gap from zero, which is insensitive to the spacial volume.
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1. Introduction

Two-flavor QCD Lagrangian in the vanishing quark mass limit has SU(2)L × SU(2)R ×
U(1)V ×U(1)A symmetries. Among them, U(1)A is special because it is violated by the quan-
tization of the theory, i.e. the chiral anomaly. Yet, whether and how anomaly affect the particle
spectra are difficult questions. At zero temperature, it appears as the heavy η ′ mass compared to
pions, while at high temperature it is under active research in the last couple of years.

In this work, we investigate the spectral density ρ(λ ) of the Dirac operator eigenvalue λ . It is
related to the U(1)A symmetry through the relation,

χπ −χδ = lim
m→0

∫ ∞

0
dλ ρ(λ )

4m2

(m2 +λ 2)2 , (1.1)

where χπ and χδ are the susceptibilities of the isotriplet pseudoscalar and scalar operators respec-
tively. When χπ − χδ = 0, the U(1)A breaking is invisible in the correlators of these channels. It
was argued that if there is a gap in the Dirac spectrum, i.e. ρ(λ ) = 0 for λ < λgap with a finite
λgap, χπ − χδ vanishes [1]. It was further shown that if the SU(2)L ×SU(2)R symmetry is fully
restored above the critical temperature, the Dirac spectrum starts with at least cubic powers of λ
and χπ −χδ vanishes under this slightly relaxed assumption [2] .

The Dirac spectrum can be investigated by numerical simulations of lattice QCD. The JLQCD
collaboration [3] and TWQCD collaboration [4] reported that U(1)A symmetry is restored above
the critical temperature using the overlap and the optimal domain-wall fermions, respectively. On
the other hand, LLNL/RBC collaboration [5, 6] and Ohno et. al [7] obtained results that suggest the
opposite conclusion using the domain-wall or staggered fermions. The former two groups employ
the fermion action having better chirality, while the latter two groups performed the simulations on
larger volumes. It is also noted that in [3] the global topological charge was fixed to zero.

In this work, we investigate the systematic effects which may result in the difference among
the previous works, especially between the overlap and domain-wall type fermions. There are
three possible causes. The first is the finite volume effect. There is always a gap in ρ(λ ) in the
finite volume even below Tc. It is therefore important to carefully check the volume scaling of
the gap if it exists. The second is the accuracy of the chiral symmetry. As [2] suggested, the
full SU(2)L × SU(2)R symmetry plays a key role to suppress the U(1)A breaking effect in the
correlators. The third is the effect of fixing topology.

We perform QCD simulations at around T = 200 MeV (>Tc) employing the Möbius domain-
wall fermion action, which allows us to simulate QCD on larger volumes than that of the over-
lap fermion. The topological charge can change in this formulation. We use the code platform
IroIro++ [8]. By the Möbius implementation of the domain-wall Dirac operator, we expect that
the SU(2)L ×SU(2)R symmetry is kept to a good precision. We also study the effect of small vio-
lation of their symmetry by reweighting the Möbius domain-wall Dirac determinant to that of the
overlap Dirac operator. This reweighting, if realizes, corresponds to the dynamical overlap fermion
simulation without fixing topology.

As we will see below, we found a significant difference between the Möbius domain-wall and
the (reweighted) overlap-Dirac operator spectra. By checking the chirality of each eigenmode, it
turned out that the low-modes of the Möbius domain-wall Dirac operator violate the Ginsparg-
Wilson relation, quite significantly even when their contribution to the residual mass is small. Such
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violation of the Ginsparg-Wilson relation in the low mode region may have a significant impact in
the study of SU(2)L ×SU(2)R and U(1)A symmetry restoration/breaking.

2. Lattice setup

2.1 Simulation with dynamical Möbius domain-wall quarks

We employ the Möbius domain-wall fermion action [9, 10] for the quarks. Its determinant is
equivalent (except for overall constants) to that of a four-dimensional effective Dirac operator

D4D
DW(m) =

1+ma
2

+
1−ma

2
γ5sgnrat(HM), sgnrat(HM) =

1− (T (HM))Ls

1+(T (HM))Ls
, (2.1)

T (HM) =
1−HM

1+HM
, HM = γ5

2aDW

2+aDW
, (2.2)

where DW is the Wilson Dirac operator with a negative cut-off scale mass −1/a. We introduce
three steps of the stout smearing for the gauge links. The residual mass, calculated as

mres =
⟨trG†∆LG⟩
⟨trG†G⟩

, ∆L =
1
2

γ5(γ5D4D
DW +D4D

DWγ5 −2aD4D
DWγ5D4D

DW), (2.3)

with G the contact-term-subtracted quark propagator, is roughly 5-10 times smaller than that of the
conventional domain-wall Dirac operator for a fixed Ls, the size of fifth direction.

For the gauge part, we employ the Symanzik gauge action with β = 4.07 and 4.10. From the
measurement of the Wilson flow at zero temperature the lattice spacing is estimated to be 0.135 fm
and 0.125 fm, respectively. For each value of β , we simulate on two volumes L3 ×Lt = 163 × 8
and 323 × 8, at quark masses amud = 0.01 (30 MeV or 32 MeV) and amud = 0.001 (3.0 or 3.2
MeV). Ls is chosen such that the residual mass is kept at around or smaller than 1 MeV. From the
Polyakov loop and the chiral condensate, the simulated temperature, 180 MeV (β = 4.07) and 200
MeV (β = 4.10), is estimated to be slightly above Tc. For each ensemble, we sample 50-200 gauge
configurations from 100-700 trajectories of the hybrid Monte Carlo updates.

2.2 The overlap/domain-wall reweighting

In order to understand the difference between the domain-wall type fermions and the overlap
fermions, we perform the reweighting of the dynamical Möbius domain-wall ensembles to those
with the overlap Dirac operator determinant.

Our choice of the overlap Dirac operator is obtained by choosing a better approximation for the
sign function in (2.1), while keeping the same kernel operator HM. On the generated configurations,
we compute lowest eigenmodes |λi⟩ of the kernel operator HM , and exactly calculate the sign
function for them. Namely, we use

Dov(0) =
1
2 ∑

λi<|λth|
(1+ γ5sgnλi)|λi⟩⟨λi|+D4D

DW(0)(1− ∑
λi<|λth|

|λi⟩⟨λi|), (2.4)

where λi is the i-th lowest eigenvalue of HM below a threshold λth. With our choice aλth = 0.35
(for L = 16) and 0.24 (for L = 32) the residual mass is negligible, i.e. < 4×10−3 MeV.
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We perform the overlap/Möbius domain-wall reweighting by computing

⟨O⟩ov =

⟨
O

detD2
ov(mud)

detD2
DW(mud)

detD2
DW(1/2a)

detD2
ov(1/2a)

⟩
DW

, (2.5)

where the ratio of the determinants are stochastically estimated using O(10) noise samples for each
configuration [11]. Here, ⟨· · · ⟩DW denotes the ensemble average on the dynamical Möbius domain-
wall ensembles. Note that we have added an additional determinant of fermions and ghosts with a
cut-off scale mass (1/2a), which are irrelevant for the low-energy physics but effective in reducing
statistical fluctuation originating from the UV modes.

It turned out that this overlap/Möbius domain-wall reweighting is effective only on the smaller
lattice (163 × 8). On the larger volume 323 × 8, we instead use the low-mode reweighting, i.e.
approximating the determinants by a product of lowest O(10) eigenvalues. This is not a very
precise approximation of the determinant but, as discussed later, can still be used to study the
possible gap in the Dirac eigenvalue spectrum.

3. Preliminary results

3.1 Dirac spectrum

First, by comparing the spectrum of low-lying eigenvalues of γ5DDW (m) and that of the
reweighted γ5Dov(m) measured on the same configurations, we examine the effect of the viola-
tion of chiral symmetry. Using the ensembles on two different lattice volumes, we can check the
volume scaling at the same time. Since the configurations are generated with the Möbius domain-
wall quark action, the topology tunneling is active.

Fig. 1 and 2 show the eigenvalue spectrum ρ(λ ) calculated on the T = 180 MeV lattices. Here,
the i–th eigenvalue of massless Dirac operator λi is obtained by,

λia ≡

√
a2(λ m

i )2 −a2m2
ud√

1−a2m2
ud

, (3.1)

where λ m
i is the i–th eigenvalue of massive hermitian Dirac operator γ5D4D

DW(m) or γ5Dov(m). When
the quark mass is heavy, mud ∼ 30 MeV, our data show apparent difference between the Möbius
domain-wall and overlap Dirac eigenvalues near λ ∼ 0 (Fig. 1). The left panel shows the data for
γ5D4D

DW(0), while the right panel is those of (reweighted) γ5Dov(0). The overlap Dirac spectrum
(right panel) has a peak around λ ∼ 0, while the Möbius Domain-wall does not. The peak in the
overlap spectrum originates from chiral zero-modes, which are determined unambiguously thanks
to the nearly exact chiral symmetry of the overlap Dirac operator. Above the peak region, i.e. λa ∼
0.02, the spectral density for the overlap becomes lower than that of Möbius domain-wall.

On the other hand, for the smaller mud (∼ 3 MeV) we do not find the peak after the reweighting,
and the near-zero modes around λa ∼ 0.01 are washed out as shown in Fig. 2, where we present the
data for L∼ 2 fm (top) and L∼ 4 fm (bottom). For the reweighted overlap, a gap ∼ 20 MeV is found
on both volumes, while the Möbius domain-wall spectrum shows eigenmodes below |aλ | ≈ 0.01.
On the large volume, in particular, there is an eigenvalue in the lowest bin. The data at T ∼ 200
MeV are qualitatively similar.
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Figure 1: Eigenvalue spectrum of the Möbius domain wall (left panel) and reweighted overlap (right) Dirac
operators. The data for amud = 0.01, T ∼ 180 MeV on the L3 = 163 ×8 lattices. The peak in the lowest bin
in the right panel is a3ρ(0) = 0.00164±0.00045.
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Figure 2: Eigenvalue spectrum of the Möbius domain wall (left panels) and reweighted overlap (right) Dirac
operators. The data for amud = 0.001, T ∼ 180 MeV on the L3 = 163 × 8 (top panels) and L3 = 323 × 8
(bottom) lattices are presented.

The reweighted overlap Dirac spectrum shows a gap, which is apparently insensitive to the
volume. We may conclude that the difference from the Möbius domain-wall fermion is mainly due
to the violation of the chiral symmetry, that we investigate in more detail below.

3.2 Violation of the Ginsparg-Wilson relation

We measure the violation of the Ginsparg-Wilson relation on each eigenmode of the Hermitian
Dirac operator through

gi ≡
ψ†

i γ5[Dγ5 + γ5D−2aDγ5D]ψi

λ m
i

[
(1−amud)

2

2(1+amud)

]
, (3.2)

where λ m
i , ψi denotes the i–th eigenvalue/eigenvector of massive hermitian Dirac operator respec-

tively. Last factor in (3.2) comes from the normalization of the Dirac operator. Note that one can
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Figure 3: Violation of the Ginsparg-Wilson relation gi for individual eigenmode. Pluses represent the
Möbius domain-wall eigenvectors, while stars show the overlap eigenvectors, which are of course zero.

obtain the residual mass by an weighted average of gi,

mres =
⟨trG†∆LG⟩
⟨trG†G⟩

= ∑
i

λ m
i (1+amud)

(1−amud)2(aλ m
i )2 gi

/
∑

i

1
(aλ m

i )2 . (3.3)

where the sum runs over all eigenvalues.
Figure 3 shows |gi| for each eigenvalue on the configuration of 163 ×8 and mud ∼ 3 MeV. For

the Möbius domain-wall fermion (crosses), the low-lying modes violate the chiral symmetry to the
order of one, which means that the expectation value of Dγ5 + γ5D−2aDγ5D is of the same order
of λ . The violation is of course negligible for the overlap fermion (stars). This result indicates
that the low modes of the Möbius domain-wall Dirac operator contain substantial lattice artifact.
Such lattice artifacts may also distort the eigenvalues, and explain the difference from the overlap
operator.

3.3 Low mode reweighting

As mentioned above, the conventional stochastic reweighting does not work on the larger
lattice. Instead, we introduce an approximation of using only the low-lying eigenvalues. This
corresponds to a certain modification of the fermion action in the ultraviolet regime. We incorporate
all the eigenvalues below λ ∼ 100 MeV. Here, we show that this low-mode reweighting can be used
to study the gap in the Dirac spectrum.

On the smaller lattice, we compare the reweighting and the low-mode reweighting as shown
in Fig. 4. Pluses and crosses represent the conventional stochastic reweighting factor and the low-
mode reweighting factor, respectively. Each point represents a gauge configuration on which the
reweighting factor is calculated. As the horizontal axis, we take the first eigenvalue λ1. Below
λ1 ∼ 20 MeV, both reweighting factors are consistent and essentially zero. Configurations having
near-zero modes are strongly suppressed in both reweighting techniques, and we may therefore
conclude that the non-existence of the gap in the Dirac spectrum does not depend on the details of
the reweighting technique.

4. Summary

We have studied the low-lying eigenvalue spectrum of the Möbius domain-wall and reweighted
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Figure 4: Reweighting factor with the low-mode reweighting (stars) and stochastic reweighting including
all modes (pluses). The horizontal axis is the lowest eigenvalue of the overlap-Dirac operator for that gauge
configuration. Data at β = 4.07 and amud = 0.001 on the 163 ×8 lattice are plotted.

overlap Dirac operators slightly above the critical temperature. Our preliminary result at the lightest
quark mass shows a significant difference between them. The overlap-Dirac eigenvalue spectrum
for the lightest quark mass shows a gap, which is insensitive to the volume, while that of the Möbius
domain-wall has small but non-zero spectrum near λ = 0. The large violation of the Ginsparg-
Wilson relation on the low-modes of the domain wall operator may explain the difference.
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