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We study the charmonium spectral functions at finite momentum and the dispersion relation of
ηc at finite temperature. For the analysis of the spectral function, we use an extended maximum
entropy method (MEM). We perform the MEM analysis for the product space of Euclidean corre-
lators in different channels or momenta to incorporate information encoded in correlations among
the Euclidean correlators in MEM. We find that this method can improve the error of the recon-
structed spectral images. To study the dispersion relation, we introduce a definition of the peak
position in the spectral image in which the associated error can be estimated on the basis of MEM.
We find that the dispersion relation of ηc at finite temperature follows the Lorentz invariant form
even near the dissociation temperature T ' 1.7Tc.
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1. Introduction

The Quark-Gluon Plasma (QGP) near the pseudo critical temperature (Tc) is believed to be a
strongly interacting liquid-like matter. Lattice QCD is a powerful method to study properties of
the QGP in such a non-perturabative environment. The dynamical properties of QGP near Tc are
among the most interesting subjects in this field. The spectral function is a useful quantity to study
the dynamical properties of the system. A peak in the spectral function represents the existence of
a bound state [1, 2]. The vector spectral function is related to the thermal dilepton production rate
[3, 4] and its slope at the origin is related to transport properties according to the Kubo formulae
[5].

On the lattice, however, directly we can only calculate the imaginary time correlation func-
tions. Thus, we must perform the analytic continuation to obtain the spectral function, which is the
imaginary part of the real time correlator. The solution to this problem is non-trivial, because it is
impossible to reconstruct a continuum function from a limited number of data points without some
assumptions [6, 7]. Maximum Entropy Method (MEM) [8] is one of the well-known methods to
deal with this problem. With MEM, spectral functions are reconstructed from the lattice correlator
and prior knowledge. One of the advantages of MEM is that this method enables us to estimate the
probabilistic error of the reconstructed image.

The charmonia created in heavy ion collisions move through the QGP medium. However,
only charmonia with zero momentum have been mainly considered on the lattice in the previous
research [9, 10] (for some exceptions, see, for example [11]). The purpose of the present study is
to investigate dynamical properties of charmonia in the pseudoscalar channel at finite momenta at
finite temperature (T ). To this end, we analyze the spectral function A(ω,~p) related to the lattice
Euclidean correlators D(τ,~p) as

D(τ,~p) =
∫

d3xei~p·~x
〈

J5(τ,~x)J
†
5 (0,~0)

〉
=

∫
∞

0
K(τ,ω)A(ω,~p)dω, (1.1)

where the kernel of the integral transformation K(τ,ω) is given by K(τ,ω)= (e−τω +e−(1/T−τ)ω)/(1−
e−ω/T ) with the imaginary time τ . J5(τ,x) = c̄iγ5c is the local interpolating operator for the pseu-
doscalar channel. We also analyze the dispersion relation of charmonia defined by the peak position
of the spectral function corresponding to ηc.

In this work, we perform the MEM analyses in an extended vector space, which is a product
space of two different sets of lattice correlators. Different lattice correlators measured with the same
set of gauge configurations have a strong correlation among them. Our analysis takes advantage of
the correlation in the MEM analysis. We find that our method improves the reconstructed images.

2. Maximum Entropy Method

Let us first briefly review the basic points of MEM. To obtain the spectral functions from
the lattice Euclidean correlators, we have to take the inverse transformation of eq. (1.1). MEM
reconstructs the most probable image from limited number of data points for D(τ,~p) with errors
on the basis of Bayes’ theorem. In the standard method of least squares, the solution is determined
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so as to minimize the value of the chi-square,

χ
2 =∑

i, j
(D(τi)−DA(τi))C−1

i j (D(τ j)−DA(τ j)) , (2.1)

where the correlations between the lattice correlator with different time slices are encoded in the
covariance matrix Ci j. The discretization of the variables τi is understood. However, the minimum
of χ2 are degenerating. In other words, there exist infinite number of spectral images that optimize
the χ2. In order to avoid this degeneracy, MEM introduces the Shannon-Jaynes entropy [12],

S =
∫

∞

0

[
A(ω)−m(ω)−A(ω) log

(
A(ω)

m(ω)

)]
dω, (2.2)

where the default model m(ω) expresses the prior knowledge. Then, we search the most probable
image that maximizes the probability P(A,α)∼ exp[Q(A,α)] with

Q(A,α) = αS(A)− 1
2

χ
2(A). (2.3)

The parameter α controls the relative weight between χ2 and S. The final output image Aout(ω) is
then obtained by integrating over α and A as

Aout(ω) =
∫

dα

∫
[dA]A(ω)P(A,α). (2.4)

One of the advantages of MEM is that this method enables us to estimate the error in the
reconstructed image probabilistically. For example, errors can be put on the average of the spectral
image 〈A〉I in some section I = [ω1,ω2] as

〈(δAout)
2〉I =

∫
dα

∫
[dA]

∫
I×I

dωdω
′
δA(ω)δA(ω ′)P(A,α)/

∫
I×I

dωdω
′, (2.5)

where δA(ω) = A(ω)−Aα(ω) and Aα is the image which maximizes the probability P(A,α) with
some α . The reduction of error is highly desirable to extract physics by MEM analyses.

3. An extension of MEM

To analyze observables on the lattice, we first generate gauge configurations with Monte Carlo
method, and then perform the measurement on each configuration. Since the Euclidean corre-
lators with different τ values on each configuration are correlated, the lattice correlators usually
have strong mutual correlations between different time slices. In the same way, different correla-
tors, such as those for different channels or different momenta, measured on a same set of gauge
configurations can have strong correlations.

Our strategy is to utilize this correlation in MEM analysis. For this purpose, we perform the
MEM analysis for two or more correlators together, by treating these correlators on the lattice as
one vector. For simplicity, we limit the discussion to the case of two correlators, A1(ω) and A2(ω),
in the following. Equation (2.3) is then extended as,

Q(A1,A2;α1,α2) = α1S(A1)+α2S(A2)−
1
2

χ
2(A1,A2), (3.1)
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Table 1: Lattice simulation parameter
Nτ T/Tc Nσ Lσ [fm] aτ [fm] aσ/aτ β Nconf

42 1.78 64 2.496 0.00975 4 7.0 427
44 1.70 64 2.496 0.00975 4 7.0 407
46 1.62 64 2.496 0.00975 4 7.0 401
96 0.78 64 2.496 0.00975 4 7.0 207

where χ2(A1,A2) is the chi-square including the correlation between A1 and A2; the correlation
between different channels can be incorporated by defining the covariance matrix in a usual manner.

In this extended analysis, correlations between the spectral images of different channels are
incorporated. When one investigates the difference of two spectral functions, for example, this
method will drastically reduce the error. It is also expected that the quality of the reconstructed
image in a single channel can be improved, because information which is not taken into account in
the conventional analysis is newly included in the extended one. In sec. 4, we will see that this is
indeed the case at least for some cases.

When we perform the extended analysis with eq. (3.1), α1 and α2 should be treated as inde-
pendent parameters. The integrals in eqs. (2.4) and (2.5) should be extended to two-dimensional
ones with regard to α1 and α2. When the correlators for two channels are uncorrelated, the ex-
tended analysis reduces to two independent MEM analyses for these channels. In this exploratory
analysis, however, we limit our analysis to the case α1 = α2 to reduce the numerical cost, and take
the integrals in this one-dimensional space. This treatment could lead to incorrect conclusions,
because αmax’s which maximize the probability is different for each correlator when each corre-
lator is separately analyzed. If αmax’s are much different for α1 and α2, the reconstructed image
with a common α becomes much distorted. An analysis with multi-dimensional al pha is under
investigation.

When we perform the extended MEM analysis with several correlators, however, requirements
for numerical analysis become more severe. First, as the search space becomes larger the numerical
cost for the minimum search becomes higher. Second, the eigenvalue spectrum of the covariance
matrix is known to show a pathological behavior when Nconf is not large enough compared to the
matrix dimension N [7]. Thus, to perform a reliable analysis, we need more configurations as the
number of channels increases. There is another numerical problem. If the correlation between the
correlators is too strong, the covariance matrix becomes almost singular. In this case, we need
numerically high precision to carry out the inversion of the covariance matrix.

4. Spectral function

We have analyzed the charmonium correlation functions in the pseudoscalar channel in quenched
QCD with the standard Wilson fermion on an anisotropic lattice with the anisotropy being 4 [13].
The simulation parameters are summarized in Table 1 [13]. All results in what follows are obtained
with the default model m(ω) = m0 ω2 with m0 = 1.15 [7].

The left panel of fig. 1 shows the result for the spectral functions with p = 0 at 1.70Tc with
the conventional and extended analyses. In the extended analysis, we have used two correlators
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Figure 1: Left: Spectral functions for the lowest charmonium in the pseudoscalar channel at T = 1.70Tc

obtained by the conventional and extended MEM analyses. The horizontal lines show the mean value and
its errors estimated by MEM. Right: Spectral functions in the pseudoscalar channel for several values of
T . The horizontal lines associated to T = 1.70Tc and 1.78Tc results represent the errors of the peaks. The
survival of ηc at T = 1.7Tc is indicated.

with p = 0 and 1.5 GeV . The figure shows that the MEM error of the reconstructed image obtained
by the extended analysis is reduced by about 30% and the width of peak becomes narrower than
the one with the conventional one. This result indicates that the extended analysis is effective to
improve the quality of the MEM image even when a single channel is concerned. We, however,
have found that the error becomes larger in another channel at p= 1.5 GeV in the extended analysis.
Our numerical analyses suggest that one reconstructed image tends to be improved while the other
tends to be distorted. This may be caused by the imbalance between the ratio of correlators and
the ratio of the eigenvectors of the covariance matrices for different momenta even in the same
channel. If these ratios are not balanced, one image can be worsen. We intend to investigate in
what situation both images are improved and the work in this direction is in progress.

The right panel of fig. 1 shows the spectral functions at zero momentum for several values of
T obtained by the conventional method. The peak corresponding to ηc exists for T ≤ 1.70Tc, while
the peak disappears at T = 1.78Tc. This result suggests that ηc still survives at T = 1.70Tc.

5. Dispersion relation of ηc in medium

Next, we investigate the dispersion relation, i.e. p dependence of the peak position, of the first
peak corresponding to ηc for T ≤ 1.70Tc. It is, however, not trivial how to define the location of
the peak and its error in MEM. For example, the position and width of a peak in a spectral image
obtained by MEM do not have physical meaning and we cannot estimate their errors [7]. In the
present study, we thus consider the center of the weight of a peak〈

ω
A(ω)

ω2

〉
I
/

〈
A(ω)

ω2

〉
I
, (5.1)

for an energy interval I = [ωmin,ωmax] including the peak structure. Then one can estimate the
error for this quantity as σ =

√
〈{ωδ (A(ω)/ω2)}2〉I/〈A(ω)/ω2〉I in MEM in a standard way as

in eq. (2.5).
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Figure 2: Dispersion relation of ηc at T = 0.78Tc, 1.62Tc and 1.70Tc. For T = 1.62 and 1.70Tc, we analyze
the spectral functions with the conventional MEM and extended one. The dashed lines show the dispersion
relation with the Lorentz invariant form eq. (5.2).

Figure 2 shows the result of dispersion relation determined by eq. (5.1) with the conventional
and extended analyses. We have checked that the result hardly changes with the variations of ωmin

and ωmax. From the figure, one sees that the peak position at p= 0 moves to larger ω as T increases.
This result suggests that the rest mass of ηc becomes heavier for higher T . Because of the Lorentz
symmetry, the dispersion relation in the vacuum takes the form,

ω =
√

m2 + p2, (5.2)

where m is the mass. The figure shows that the dispersion relation for T = 0.78Tc is consistent
with this behavior. In medium, on the other hand, there is no reason that the dispersion relation is
given by eq. (5.2). Figure 2, however, shows that the dispersion relation traces eq. (5.2) well even
at T = 1.70Tc within the error, which is a highly nontrivial result.

We performed the above analysis both in the the conventional and extended methods. Both
results are presented in fig. 2 for T/Tc = 1.62 and 1.70. The result shows that the improvement
for each error is not large for these analyses. When the correlations between the values at different
momenta are in question, the benefit of the extended analysis will become prominent.

6. Discussions and conclusion

In this study, we analyzed the charmonium spectral function in the pseudoscalar channel at
nonzero momentum and dispersion relations of ηc in an extended MEM analysis which utilizes the
correlation between correlators with different momenta. A method to define the peak position in a
spectral function with the error for it in MEM is proposed. We found that the dispersion relation of
the charmonium still follows the Lorentz invariant form above Tc until its dissociation. We point
out that this result is not trivial at all.

Analyzing the correlators in the extended method, we found that our method reduces the error
of reconstructed images with MEM. However, this reduction is limited. There is several possible
reasons for this. First, when we adopt the extended covariance matrix to define χ2, the fitting error
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does not necessarily reduce. This does not mean that this analysis is wrong. Second, when we
extend the correlator space, we need more configurations to get a reliable covariance matrix.

In this work, we analyzed only two correlators with two different momenta together. How-
ever, we can use more than three correlators not only with different momenta but also in ccdifferent
channels, for example, pseudoscalar and vector channels, vector channel with transverse and lon-
gitudinal components, and so forth.

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant Numbers 23540307, 25800148,
and 26400272. The numerical calculations have been performed on the PACS-CS computer at
University of Tsukuba, Blue Gene at KEK and φ at KMI at Nagoya University.

References

[1] M. Asakawa and T. Hatsuda, J/ψ and ηc in the deconfined plasma from lattice QCD, Phys. Rev. Lett.
92 (2004), no. 1 012001 [hep-lat/0308034].

[2] S. Datta, F. Karsch, P. Petreczky and I. Wetzorke, Behavior of charmonium systems after
deconfinement, Phys. Rev. D 69 (2004), no. 9 094507 [hep-lat/0312037].

[3] F. Karsch, E. Laermann, P. Petreczky, S. Stickan and I. Wetzorke, A lattice calculation of thermal
dilepton rates, Physics Letters B 530 (2002), no. 1 147–152 [hep-lat/0110208].

[4] H.-T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E. Laermann and W. Soeldner, Thermal dilepton
rate and electrical conductivity: An analysis of vector current correlation functions in quenched
lattice QCD, Phys. Rev. D 83 (2011), no. 3 034504.

[5] F. Karsch and H. W. Wyld, Thermal greens functions and transport coefficients on the lattice, Phys.
Rev. D 35 (1987), no. 8 2518–2523.

[6] M. Jarrell and J. E. Gubernatis, Bayesian inference and the analytic continuation of imaginary-time
quantum monte carlo data, Physics Reports 269 (1996), no. 3 133–195.

[7] M. Asakawa, Y. Nakahara and T. Hatsuda, Maximum entropy analysis of the spectral functions in
lattice QCD, Progress in Particle and Nuclear Physics 46 (2001), no. 2 459–508
[hep-lat/0011040].

[8] E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106 (1957), no. 4 620–630.

[9] G. Aarts, C. Allton, M. B. Oktay, M. Peardon and J.-I. Skullerud, Charmonium at high temperature in
two-flavor QCD, Phys. Rev. D 76 (2007), no. 9 094513 [0705.2198].

[10] H.-T. Ding, A. Francis, O. Kaczmarek, F. Karsch, H. Satz and W. Soeldner, Charmonium properties
in hot quenched lattice QCD, Phys. Rev. D 86 (2012), no. 1 014509 [1204.4945].

[11] H.-T. Ding, Momentum dependences of charmonium properties from lattice QCD, Nuclear Physics A
904-905 (2013) 619c–622c [1210.5442].

[12] R. Bryan, Maximum entropy analysis of oversampled data problems, European Biophysics Journal 18
(1990), no. 3 165–174.

[13] C. Nonaka, M. Asakawa, M. Kitazawa and Y. Kohno, Charmonium spectral functions at finite
momenta in the gluon plasma from lattice QCD, J. Phys. G: Nucl. Part. Phys. 38 (2011), no. 12
124109.

7

http://arXiv.org/abs/hep-lat/0308034
http://arXiv.org/abs/hep-lat/0312037
http://arXiv.org/abs/hep-lat/0110208
http://arXiv.org/abs/hep-lat/0011040
http://arXiv.org/abs/0705.2198
http://arXiv.org/abs/1204.4945
http://arXiv.org/abs/1210.5442

