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We present new results on the reconstruction of mesonic spectral functions for three temperatures
1.1Tc, 1.2Tc and 1.4Tc in quenched QCD. Making use of non-perturbatively improved clover
Wilson valence quarks allows for a clean extrapolation of correlator data to the continuum limit.
For the case of vanishing momentum the spectral function is obtained by fitting the data to a
well motivated ansatz, using the full covariance matrix of the continuum extrapolated data in the
fit. We found that vector correlation function is almost temperature independent in the current
temperature window. The electrical conductivity of the hot medium, related to the origin of the
vector spectral function at zero momentum, is computed from the resulting parameters at all three
temperatures, leading to an estimate of 0.2Cem . σ/T . 0.4Cem. The dilepton rates resulting
from the obtained spectral functions show no significant temperature dependence.
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1. Introduction

Ongoing Heavy Ion Collision experiments conducted at facilities like RHIC and LHC provide
new output about the nature of elementary particles and their interactions. The spectral function
in the vector channel at finite temperature provides information on the thermal dilepton rates ac-
cessible in those experiments [1, 2], which we will attempt to extract from the fundamental theory
of QCD in the following. Important dynamical quantities can be extracted from the inherently
non-perturbative regime of small frequencies, which motivates the use of lattice data. With this we
extend our former investigations [3, 4, 5]. A typically well accessible quantity on the lattice is the
correlation function in a given spectral channel. It inhibits dynamical properties of the QGP state
when investigated at finite temperature [6, 7]. As such, the light vector correlator is related to the
electrical conductivity σ of the QGP, the dilepton rate dW

dωd3 p and the photon rate dR
d3 p as measured

in heavy ion collision experiments, via its spectral function ρV [8, 9]. While the spectral function
relates to the correlator through an integral equation,

GH(τ,~p) =
∞∫

0

dω

2π
ρH(ω,~p,T )K(ω,τ,T ) with K(ω,τ,T ) =

cosh(ω(τ− 1
2T ))

sinh( ω

2T )
, (1.1)

the electrical conductivity is related to the spectral function via the Kubo formula,

σ

T
=

Cem

6
lim
ω→0

ρii

ω
. (1.2)

The two experimentally observable rates are in terms of the spectral function given by

dW
dωd3 p

∼ ρV (ω,~p,T )
(ω2−~p2)(eω/T −1)

, ω
dRγ

d3 p
∼ ρT

V (ω = |~p|,T )
eω/T −1

. (1.3)

These relations imply that once the spectral function of the vector channel is extracted from QCD,
important insights into non-perturbative phenomena of heavy ion collisions and the QGP can be
gained.

In order to determine the spectral function, however, (1.1) has to be inverted, which is often
referred to as an "ill posed" problem [6]. The baseline of this reasoning is that the numerical
(temporal) correlator data contains O(10) points, while a decent resolution of the spectral function
on the other hand requires O(1000) points. Thus additional information has to be provided, which
we choose to be in the form of a phenomenologically inspired ansatz which is fitted to continuum
extrapolated lattice QCD correlation functions.

2. Lattice observables and continuum extrapolation

The renormalized isovector correlation function is constructed as

JH = ZV ψ̄(x)γHψ(x) → GH(τ,~x) = 〈JH(τ,~x)J
†
H(0,~0)〉, (2.1)

and projected to definite momentum ~p:

GH(τ,~p) = ∑
~x

GH(τ,~x)ei~p~x. (2.2)
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In this study we constrain ourselves to the case ~p = 0. Splitting the correlation function (2.2) into
spatially and temporally polarized components, in Euclidean metric GV = Gii +G00, we form a
ratio of correlation functions

Rii =
T 2

χq

Gii(τT )

G f ree,lat
V (τT )

, χq =−G00/T, (2.3)

where Gii is normalized by both the full free correlator on the lattice [13] and the quark number
susceptibility χq. The division by the latter rids us of the need to actually renormalize the spatial
current correlator Gii, while the division by the former cancels its exponential falloff.

Nτ Nσ β κ 1/a[GeV] # conf.

T = 1.1Tc

32 96 7.192 0.13440 9.65 314
48 144 7.544 0.13383 13.21 358
64 192 7.793 0.13345 19.30 242

T = 1.2Tc

28 96 7.192 0.13440 9.65 232
42 144 7.544 0.13383 13.21 417
56 192 7.793 0.13345 19.30 273

T = 1.4Tc

24 128 7.192 0.13440 9.65 340
32 128 7.457 0.13390 12.86 255
48 128 7.793 0.13340 19.30 456

Table 1: Parameters of all lattices for all temperatures used in this study.

Lattice calculations have been performed using a non-perturbatively improved Wilson-Clover
action without dynamical sea quarks at three different temperatures T = 1.1Tc,1.2Tc and 1.4Tc

with 3 increasingly finer lattices each, see Tab. 1. All valence quark masses are chosen to be small
around mMS(µ = 2GeV )∼ O(10MeV ). Note that for the two lowest temperatures the aspect ratio
is fixed to Ns/Nt = 3 and Ns/Nt = 3.42, respectively, ensuring a constant physical volume, while
for the T = 1.4Tc lattice finite volume effects were verified to be small [3].

For all three temperatures continuum extrapolations have been performed in a2 for all Nτ/2
original distances available on the finest lattice. To achieve this, corresponding data points on the
coarser lattices have been spline interpolated along τT . The result is shown, for T = 1.1Tc, in
Fig. 1 (left). The errors on the continuum extrapolated ratios obtained from a bootstrap analysis are
slightly below the one percent level. The continuum extrapolated correlation functions Gii/T 3 for
each temperature are shown in in Fig. 1 (right). The correlators overlap, thus we expect the same
scaling with temperature in our resulting spectral functions, already indicating that temperature
effects in the dilepton rates and the electrical conductivities seem to be small.

3. Fitting to the data

In order to extract the vector spectral function via (1.1) we employ an ansatz for its spatial
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Figure 1: Left: All three lattice correlators and the resulting continuum extrapolated correlator for the T =

1.1Tc dataset. Note that the finest lattice agrees with the continuum extrapolation down to τT ∼ 0.18. The
datapoint at τT = 0 indicates the continuum extrapolated result for the inverted quark number suceptibility.
Right: Continuum extrapolated correlation functions for all three temperatures. Shown are the renormalized
spatial components. The solid line is the corresponding free correlation function.

part:

ρii(ω,T ) = χqcBW
ωΓ

ω2 +(Γ/2)2 +
3

2π
(1+ k)ω2 tanh

(
ω

4T

)
(3.1)

≡ ρBW(ω,T )+(1+ k)ρ free
V (ω,T ). (3.2)

It consists of two parts: a Breit-Wigner peak, corresponding to the low ω region, and a modified
version of the free spectral function. The modification parameter in the latter case fulfills k = αs/π

at leading order perturbation theory [3]. This ansatz is inspired by the known relations for spectral
functions in the non-interacting case,

ρ
free
ii (ω,T ) = 2πT 2

ωδ (ω)+
3

2π
ω

2 tanh(
ω

4T
), ρ

free
00 (ω,T ) = 2πT 2

ωδ (ω) (3.3)

and ρ
free
V (ω,T ) = ρ

free
ii (ω,T )−ρ

free
00 (ω,T ). (3.4)

While the temporal correlator is constant due to charge conservation, and thus the δ -function in
its spectral function is protected by symmetry, the corresponding δ -function in the spatial part is
expected to be washed out upon the onset of interactions [7, 9, 10]. This effect is hence modeled
as a Breit-Wigner peak in our ansatz.

An estimator for this spectral function is then obtained from relation (1.1) by χ2-minimizing
the ansatz on the r.h.s. with respect to the continuum extrapolated ratio data from eqn. (2.3) on the
l.h.s. The fit itself is fully correlated with the covariance matrix of the extrapolated continuum data
estimated from the bootstrap samples. From the entries of the covariance matrix it becomes appar-
ent that there are covariances between data points used in the fit, which are comparable in size to
the variances of the data at and around the midpoint, and hence non-negligible in the construction
the χ2 function.

However, the information about the small ω region resides in the large τT region of the cor-
relator [11], i.e. around its midpoint. In order to extract more information from this region we also
extract and fit the first thermal moment of the correlator, see e.g. [3] for a detailed discussion.
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4. Results

In the following our procedure is shown using T = 1.1Tc as an example case. The fits of
the ansatz (3.1) to the continuum extrapolated data show a very good convergence behaviour and
yield as a result the three fit parameters Γ, cBW , k and their respective statistical fit errors, see the
first column of Tab. 2. In Fig. 1 (left) one sees that the ratio on the finest lattice agrees with the
continuum above τT ' 0.18, while cutoff effects are visible for the coarser lattices also at larger
distances. Although the continuum extrapolation seems to work also for smaller distances, we
are careful and include only those τT in the fit where the finest lattice agrees with the continuum
extrapolation. Generally, the smallest τT to include in the fit for all temperatures lies in the interval
[0.18,0.20]. The value of χ2/dof = 1.24 shows that the (rather simple) ansatz describes the data
already well. The relative statistical fit errors of the parameters are roughly 30% for cBW/Γ and
40% for Γ. Note that the former has been calculated taking into account the correlation of the two
parameters. Using these parameters and their correlation matrix we construct the resulting spectral
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Figure 2: Left: The spectral functions resulting from the fit for T = 1.1Tc. The dotted lines are the Breit-
Wigner and the free contributions seperately to guide the eye. Right: The final results for the electrical
conductivity for all three temperatures. Their numerical values are listed in Tab. 3.

function with its corresponding statistical errorband in Fig. 2 (left). The electrical conductivity is
then obtained from the origin of the spectral function via the Kubo relation (1.2),

σ

CemT
=

2
3T

χq
cBW

Γ
. (4.1)

In order to investigate a possible systematic uncertainty, we introduce a low-frequency cutoff
in the free part of the ansatz [3],

ρ
free
V → ρ

free
V θ(ω0,∆ω) with θ(ω0,∆ω) =

(
1+ exp((ω2

0 −ω
2)/(ω∆ω))

)−1
, (4.2)

with θ(ω0,∆ω) being a representation of the θ -function for ∆ω = 0, and smeared out for ∆ω 6= 0.
Effectively, by varying ω0, we probe the sensitivity of our Ansatz with respect to a continuous
change in the low frequency region, i.e. the free part contributing only for ω & ω0, as opposed
to contributing for ω > 0. The results for a number of cuts with different ω0 applied in the fit
procedure is shown in Tab. 2. A value of ∆ω/T = 0.5 is used throughout the scan; the results are
insensitive to its actual choice. The results for cBW T/Γ∼ σ are rising slightly when moving the cut
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∆ω/T 0.0 0.5
ω0/T 0.0 1.0 2.5 3.0 3.5 4.0
Γ/T 2.89(1.12) 2.85(1.09) 2.99(0.95) 3.31(0.91) 3.88(0.88) 4.75(0.88)
cBW T

Γ
0.524(146) 0.543(149) 0.607(138) 0.610(115) 0.595(88) 0.571(44)

k 0.039(7) 0.039(7) 0.038(7) 0.038(7) 0.037(7) 0.035(7)
χ2/dof 1.24 1.24 1.23 1.22 1.21 1.19

Table 2: Fit results for T = 1.1Tc and some selected cutoffs. Note that cBW/Γ is directly proportional to the
electrical conductivity σ .

to higher frequencies, showing that the peak rises in height. Around ω0/T ' 3 the peak becomes
much broader to compensate for the cut off contribution and cBW T/Γ falls of again. At this point
the Breit-Wigner peak contributes (as the only contribution) to a frequency regime that is, for the
uncut fit, already dominated by the free part, see Fig. 2. Raising ω0/T even further does, from
a physical point of view, not make sense anymore. In addition, note how the value of χ2/dof is
not rising althrough the procedure: a-priori there is no reason for the fit to become much worse, in
terms of its χ2 value, upon the application of such cuts. It turns out the ansatz can perfectly com-
pensate for the missing free contribution to the extent of ω0/T ' 3. Beyond that, mathematically
the Breit-Wigner peak can still compensate for the cut, but, as argued above, the initial physical
motivation of this form of ansatz is not given anymore.

T 1.1Tc 1.2Tc 1.4Tc(
σ

CemT

)
max

0.436 0.365 0.361(
σ

CemT

)
min

0.217 0.211 0.217

Table 3: Final results for the electrical conductivity. Note that the systematic error from the cut-procedure
and the statistical fit error are included (see text).

For the electrical conductivity, however, we can include its maximal deviation from the uncut
result as an upper systematical error. Our results for the electrical conductivity for all three tem-
peratures are given in Tab. 3 and Fig. 2 (right), respectively. They are comparable to recent studies
[14, 15] using MEM and Wilson Clover fermions at finite lattice spacing. For a comparison of
different calculations of the electrical conductivity see [12]. The thermal dilepton rates calculated
from our ansatz for the spectral functions via the first expression of (1.3) are shown in Fig. 3 for all
three temperatures. They are qualitatively comparable to the rate obtained by an HTL calculation
[16] in the intermediate ω region, as well as to the leading order (Born) rate for large ω . However,
our results show a better behaviour for small ω consistent with a finite electrical conductivity (see
also Fig. 2 (left)).

5. Conclusion

Using non-perturbatively improved Wilson Clover valence fermions we performed continuum
extrapolations of light vector channel correlation functions. The extrapolations yield reliable results
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Figure 3: The thermal dilepton rate as a function of ω .

with errors at the sub-percent level. Employing an ansatz for the corresponding spectral function,
these are used to perform a fully correlated χ2-minimization and to obtain results for the spectral
functions and the electrical conductivities via a Kubo relation. The electrical conductivities are
in accordance with earlier results obtained by MEM and χ2-minimization methods. The thermal
dilepton rates are obtained and compared to the HTL and leading order rates and show almost no
thermal effect in the analyzed temperature region.
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