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position and width of the lowest lying peak in the spectral function of the Wilson line correlator
in Coulomb gauge. Spectral information is extracted from Euclidean time data using a novel
Bayesian approach different from the Maximum Entropy Method. In order to extract both the
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lattices, is found to be of the same order of magnitude as in hard-thermal loop (HTL) perturbation
theory.
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1. Introduction
The experimental investigation of relativistic heavy-ion collisions has entered a precision era

at RHIC and LHC. In particular the yields of the bound states of a heavy quark and anti-quark [1],
have been measured in the presence of a quark-gluon plasma in unprecedented detail (for bb̄ e.g.
see [2, 3]). The aim for theory is to provide a dynamical picture of heavy quarkonium evolution
in a thermal environment, which in turn will allow us to deduce from the measured yields the
properties of the surrounding medium. Lattice QCD plays an important role in this endeavor, as it
is currently the only first principles method that can provide us with the necessary, non-perturbative
information about the QCD medium at phenomenologically relevant temperatures just above the
deconfinement transition.

Due to the separation of scales between the heavy quark mass and the typical energy density
of the plasma created in current generation heavy-ion colliders, the real-time evolution of a heavy
QQ̄ pair can be summarized in a Schroedinger equation with an effective interaction potential V (r).
With the help of effective field theories [4] this potential can be derived directly from the underlying
field theory QCD. It was found to be related to the late real-time behavior of the thermal rectangular
Wilson loop

V (r) = lim
t→∞

i∂tW (t,r)
W (t,r)

, W (t,r) =
〈

exp
[
− ig

∫
�

dxµAµ(x)
]〉

. (1.1)

The evaluation of this expression in HTL perturbation theory [5] showed that the potential is com-
plex valued. The real part exhibits Debye screening, while the imaginary part has been related to
the scattering with (Landau damping) and absorption of (singlet-octet transition) gluons from the
surrounding medium1. For more than two decades the temperature dependence of the real part of
this potential has been modeled [7] using either the color singlet free energies F(1)(r), the internal
energies U (1)(r) or combinations thereof. Even though it has been shown that to leading order in
resummed HTL perturbation theory Re[V ] and F(1) agree, this relation already does not seem to
hold at next to leading order [8]. Hence a fully non-perturbative evaluation of Eq.(1.1) is called for.

Over the past two years there has been steady progress, both conceptual and technical, towards
a reliable evaluation of Eq.(1.1) on the lattice. Since Monte Carlo simulations are performed in
Euclidean time, the real-time Wilson loop is not directly accessible. The necessary information can
nevertheless be obtained through the use of a spectral decomposition [9, 10]

W (τ,r) =
∫

dωe−ωτ
ρ(ω,r) ↔

∫
dωe−iωt

ρ(ω,r) =W (t,r).

If combined with Eq.(1.1) it connects the spectral function ρ(ω,r), which is accessible on the
lattice in principle, to the potential

V (r) = lim
t→∞

∫
dω ωe−iωt

ρ(ω,r)/
∫

dω e−iωt
ρ(ω,r). (1.2)

Two challenges need to be overcome in practice. First, spectral information needs to be inferred
from a finite set of noisy Euclidean data points for W (τn,r), n = 1..Nτ . This is in general an ill-
defined problem but can be given meaning through the use of Bayesian inference. In this well
established statistical approach, additional prior information is used to regularize an otherwise
under-determined χ2 fit. For our study we use a novel Bayesian prescription for the reconstruction

1A dynamical interpretation in the framework of open-quantum systems has been proposed in [6]
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Figure 1: From Euclidean lattice QCD correlators to the complex valued static heavy quark potential.

of ρ(ω,r) [11] that has been shown in mock data tests to surpass the usual Maximum Entropy
Method [12] in both accuracy and precision.

The second challenge is related to carrying out the late time limit in Eq.(1.2). In [10] it was
noted that the lowest lying peak in ρ(ω,r) will ultimately dominate the dynamics, so that one
can directly fit its shape and carry out the Fourier transform of Eq.(1.2) analytically. The exact
functional form to be used in such a fit was however only understood later on in [13] and found to
be a skewed Lorentzian

ρ ∝
|ImV (r)|cos[Reσ∞(r)]− (ReV (r)−ω)sin[Reσ∞(r)]

ImV (r)2 +(ReV (r)−ω)2 + c0(r)+ c1(r)(ReV (r)−ω)+ . . . .

The position of this peak encodes the real part, the width on the other hand determines the imagi-
nary part of the potential. The feasibility of this procedure, sketched in Fig.1, has been tested using
HTL perturbation theory in [14]. Indications were found that for the extraction of the potential
alone we do not need to rely on the rather noisy Wilson loop, but can use the the Wilson line corre-
lators W||(τ,r) in Coulomb gauge instead. The reason for the generally better signal to noise ratio
is the absence of cusp divergences in the latter (see [15] and references therein).

2. Quenched lattice QCD

We begin the presentation of our results with the temperature dependence of the inter-quark
potential on quenched lattices. In addition to [16] we also show some explicit consistency checks.
In the absence of dynamical fermions, the number of temporal lattice points can easily surpass
Nτ = 24, which allows for a reliable determination of the real part and a robust order of magnitude
estimate for the imaginary part. Using the naive anisotropic Wilson action with β = 7 and ξ =

3.5 [17] we generated 323 ×Nτ configurations, changing temperature 839MeV(3.11Tc) ≥ T ≥
210MeV(0.78Tc) by varying the temporal extend between 24 ≥ Nτ ≥ 96 (see Tab.1). To measure
the Wilson line correlators we iteratively fix to Coulomb gauge using Fourier acceleration, and
evaluate the observable along each spatial axis on the square- and cubic diagonals. The spatial
distances are corrected for lattice artifacts from a comparison between free propagators on the
lattice and in the continuum [18].

The spectral functions underlying the potential are extracted from all imaginary time data-
points except those at τ = 0,β . By this we avoid possible overlap divergences [15]. Our frequency
range is chosen to lie between ωnum ∈ [−168,185]×Nτ/24 GeV using Nω = 4000 points, among

SU(3):Nτ 24 32 40 48 56 64 72 80 96
T [MeV] 839 629 503 419 360 315 280 252 210

Nmeas 3270 2030 1940 1110 1410 1520 860 1190 1800

Table 1: Quenched SU(3) on 323×Nτ anisotropic ξb = 3.5 lattices with as = 0.039fm and Tc ≈ 271MeV.
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Figure 2: Gluonic medium: (left) Comparison between the real part of the static inter-quark potential (open
symbols) and the color singlet free energies (gray circles). The values are shifted for better readability.
Error bars are obtained from Jackknife variance, error bands from additional systematics as described in the
text. (right) Horizontally shifted values of Im[V ] (symbols) compared to leading order hard-thermal loop
perturbation theory (solid lines).
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Figure 3: Dependence of Re[V] (left) and Im[V] (right) on the removal of datapoints close to τ = β . Even
with τmax = 32 for Nτ = 96 we do not find a downward trend in Re[V] that would mimic Debye screening
at higher T. On the other hand beyond τmax ≤ 15 the precision of the reconstruction degrades significantly.

which Nhr = 550 are used to resolve the lowest lying peak. For a neutral reconstruction we deploy
a flat default model m(ω) = const. and use 512bit precision arithmetic in a LBFGS minimizer to
find the unique Bayesian spectral function related to the measured data. Our stopping criterion is
a step size of ∆ = 10−60. The subsequent fit of a skewed Lorentzian shape around the full width at
half maximum of the lowest lying peak yields the values for Re[V ] and Im[V ] shown in Fig.2. The
error bars are obtained from the Jackknife variance between ten reconstructions, each excluding a
consecutive block of 10% of the measurements Nmeas.

As expected, the confining linear rise of the real part in the hadronic phase goes over smoothly
into a Debye screened form above the deconfinement temperature. When comparing Re[V] (open
colored symbols) to the color singlet free energies F(1)(r) = −T log[W||(r,τ = β )] (gray filled cir-
cles) we find that their values lie close to each other at all temperatures investigated (perturbation
theory indicates [8] that at intermediate distances Re[V] will lie slightly below F(1)(r)). The fact
that the spectral reconstruction takes into account several points along τ , while the free energies
use only τ = β , explains why our values for Re[V] at T ' Tc show a much smaller variance. At the
same time Im[V] is found to be of the same order of magnitude as the estimates from leading order
hard-thermal loop resummed perturbation theory. This result for Im[V] is consistent with a recent
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modeling study which deploys HTL spectral functions to fit the Wilson line correlators [19].
The results of a spectral reconstruction can suffer from several systematic factors. To quantify

these uncertainties we give in Fig.2 an error band that is obtained from the maximum variation
among reducing the number of datapoints along τ by four or eight, changing the default model
dependence normalization (×10, ×0.1) or functional form (m ∝ const,ω−2,ω2) as well as remov-
ing 10%, 20% and 30% of the statistics of the input data. The number of available datapoints is
particularly important, which is why we show its influence explicitly in in Fig.3 for the lowest
(T = 210MeV, Nτ = 96) and highest (T = 839MeV, Nτ = 24) temperature. Note that taking into
account only τmax = 32 at Nτ = 96 does not change Re[V] beyond statistical errors. This is why
we attribute the change in the functional form of Re[V] towards Debye screening at higher temper-
atures indeed to the effects of a thermal medium. At the same time it appears that Im[V] shrinks,
which is not surprising, since a finite spectral width mostly dominates the correlator at late τ . If
such values are discarded it enters at intermediate τ only exponentially suppressed. On the other
hand, Im[V] can be extracted even at relatively small Nτ = 24 if the late τ values are retained.
Reducing further to τmax = 16 starts to significantly increase the variance of the reconstruction, the
correct result however still lies within the Jackknife error bars.

3. Dynamical lattice QCD

For phenomenological applications the behavior of the potential in a realistic QCD medium
needs to be understood. We proceed towards this goal by carrying out the extraction procedure
laid out above on dynamical lattices generated by the HotQCD collaboration [20], which contain
light u, d and s quarks. The temperature on these isotropic 483× 12 lattices with the N f = 2+
1 ASQTAD action (ml = ms/20) is changed between 286MeV(1.64Tc) ≥ T ≥ 148MeV(0.85Tc)

through varying the lattice spacing, so that at each T the same number of datapoints is available (see
Tab.2). Unfortunately Nτ = 12 is not large enough to obtain reliable values for the spectral width,
i.e. Im[V], so that we show only the real-part of the potential in Fig.4. The spectral reconstruction
is performed using β num = 20 and a numerical frequency interval between ω ∈ [−11,12], which is
divided in Nω = 4600 steps. Nhr = 1000 points are used to resolve the lowest lying peak in detail.

We find that the spectral based determination of Re[V] is very robust at T ' Tc and allows
us to go up to distances r ' 1.2fm. We do not see any indication of string breaking yet, probably
since the pion masses on these lattices Mπ ≈ 300MeV are still larger than the physical value. The
presence of dynamical fermions significantly changes the location of the phase transition compared
to pure SU(3) theory, so that here already at T = 286MeV Debye screening is well pronounced.
However, just as in the quenched case, the values of the color singlet free energies (gray filled
circles) lie close to Re[V].

The error bars in Fig.4 are obtained from the Jackknife variance between ten individual recon-
structions, each with a different set of 10% of the statistics removed. The error bands are based

QGP: β 6.8 6.9 7 7.125 7.25 7.3 7.48
T [MeV] 148 164 182 205 232 243 286
a [fm] 0.111 0.1 0.09 0.08 0.071 0.068 0.057
Nmeas 1295 1340 1015 840 1220 1150 1130

Table 2: The isotropic HotQCD 483×12 lattices with ASQTAD action (ml = ms/20,Tc ≈ 174MeV).
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Figure 4: Full QCD: (left) Comparison between the real part of the static inter-quark potential (open sym-
bols) and the color singlet free energies (gray circles). The values are shifted for better readability. (right)
Results for Re[V] for different number of datapoints at the lowest (β = 6.8) and highest (β = 7.48) temper-
atures. Since the datapoints close to τ = β have a relatively low signal-to noise ratio their removal reduces
the Jackknife variance of the result at the highest T.

on the maximum variance between changing the number of datapoints in the reconstruction by one
and two, changing the default model dependence normalization (×10, ×0.1) or functional form
(m ∝ const,ω−2,ω2) as well as removing 10%, 20% and 30% of the statistics of the input data.

Since we only have at our disposal a small number of datapoints, we show explicitly on the
right of Fig.4 how the results changes if additional points are removed. Due to the difference in lat-
tice spacing the removal of one temporal step at β = 6.8 amounts to a larger cut in physical extend
than for β = 7.48. We find that for the statistics and the lattice spacing available the effects are
small enough that it is possible to attribute the changes between the lowest temperature (confining
linear rise) and the highest temperature (Debye screened) indeed to medium effects.

4. Conclusion

The spectral function based determination of the real-time potential from lattice QCD has ma-
tured due to recent conceptual and technical progress. A crucial ingredient is a novel Bayesian spec-
tral reconstruction prescription that allows to faithfully reconstruct the skewed Lorentzian shapes
encoded in the spectra of Wilson loop and Wilson line correlation functions from Euclidean time
simulations. We have determined the values of both Re[V] and Im[V] in a purely gluonic medium
and the real-part in a realistic QCD medium with light u, d and s quarks. The main finding is
that Re[V] lies close to the color singlet free energies and thus shows a smooth transition from the
linearly rising confining behavior towards Debye screening. The imaginary part is found to be of
the same order of magnitude as in hard-thermal loop resummed perturbation theory. The authors
thank H. B. Meyer, M. P. Lombardo, P. Petreczky and J.-I. Skullerud for fruitful discussions. YB
is supported by SNF grant PZ00P2-142524.
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