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We study a reweighting method aiming at numerical studies of QCD at finite density, in which
the conventional Monte-Carlo method cannot be applied directly. One of the most important
problems in the reweighting method is the overlap problem. To solve it, we propose to perform
simulations at several simulation points and combine their results in the data analyses. In this
report, we introduce this multipoint reweighting method and test if the method works well by
measuring histograms of physical quantities. Using this method, we calculate the meson masses
as continuous functions of the gauge coupling β and the hopping parameters κ in QCD at zero
density. We then determine lines of constant physics in the (β ,κ) space and evaluate the deriva-
tives of the lattice spacing with respect to β and κ along the lines of constant physics (inverse of
the beta functions), which are needed in a calculation of the equation of state.
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1. Introduction

In a study of QCD phase diagram at finite temperature (T ) and density, the complex quark
determinant causes a serious problem in numerical simulations. The reweighting method is com-
monly used to avoid this problem in the low density region. However, when we increase the chemi-
cal potential (µ), the sign problem and the overlap problem becomes severe. In this report, we focus
on the overlap problem. The overlap problem is expected to be milder if one changes a couple of
parameters at the same time. For example, WHOT-QCD collaboration investigated the phase struc-
ture of Nf-flavor QCD in the heavy-quark region, and found that the system at large quark masses
is controlled by only two combinations of parameters, β + 48∑Nf

f=1 κ4
f and ∑Nf

f=1 κNt
f cosh(µ f /T )

on an N3
s ×Nt lattice, where β = 6/g2, and κ f and µ f are the hopping parameter and chemical

potential of f th-flavor, respectively [1]. This means that, when one changes the parameters with
keeping these combinations constant, the system does not change, thus the overlap problem does
not arise. We expect such combinations of parameters exist also in the light-quark region.

In that study in the heavy-quark region [1], the multipoint reweighting method [2] for β played
an important role: Combining data obtained at different β , we could calculate the effective potential
in a wide range of the observable values, that was mandatory in a reliable evaluation of the transition
point. In the present paper, we extend the multipoint reweighting method in the multi-parameter
space of β and κ f to overcome the overlap problem in the light-quark region.

In the next section, the multipoint reweighting method is introduced, and, in Sec.3, we examine
the overlap problem performing numerical simulations in two-flavor QCD. We then calculate the
meson masses, the lines of constant physics, and the derivatives of the lattice spacing with respect
to β and κ along the lines of constant physics in Sec. 4. The section 5 is for the conclusions.

2. Multipoint reweighting method

We extend the multipoint reweighting method to the multi-parameter space such that both
gauge and quark parameters are changed simultaneously. Let us first define a histogram for a set of
physical quantities X = (X1,X2, · · ·) as

w(X ;β , κ⃗, µ⃗) =
∫

DU ∏
i

δ (Xi − X̂i) e−Sg
Nf

∏
f=1

detM(κ f ,µ f ). (2.1)

where Sg is the gauge action, M is the quark matrix and X̂ = (X̂1, X̂2, · · ·) is the operators for X .
We denote S ≡ Sg−∑ f lndetM. The coupling parameters of the theory are β , κ⃗ = (κ1,κ2, · · · ,κNf),

and µ⃗ = (µ1,µ2, · · · ,µNf). Then, the partition function is given by Z(β , κ⃗ , µ⃗) =
∫

w(X ;β , κ⃗ , µ⃗)dX
with dX = ∏i dXi, and the probability distribution function of X is given by Z−1w(X ;β , κ⃗ , µ⃗). The
expectation value of an operator O[X̂ ] which is written in terms of X̂ is calculated by

⟨O[X̂ ]⟩(β ,⃗κ ,⃗µ) =
1

Z(β , κ⃗ , µ⃗)

∫
O[X⃗ ]w(X⃗ ;β , κ⃗, µ⃗)dX . (2.2)

For simplicity, we denote the set of coupling parameters (β , κ⃗ , µ⃗) as β in the following of this
section.
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We perform a simulation at β0 and calculate the histogram at β . We fix three quantities X ,

S(β ) ≡ S and S(β0) ≡ S0 to construct the histogram, where S is the value of the action with the
coupling parameters β on the configuration generated at β0. From Eq.(2.1), we find

w(X ,S,S0;β ) = e−(S−S0) w(X ,S,S0;β0). (2.3)

The histogram of X is given by w(X ;β ) =
∫

w(X ,S,S0;β )dSdS0.
When X has large correlation with the difference of the actions, S− S0, the peak position of

the distribution may change appreciably, causing the overlap problem. (See Sec. 3.) To overcome
the overlap problem and to obtain w and Veff that are reliable in a wide range of X , we extend
the reweighing formulas to combine data obtained at different simulation points [1, 2] for the case
including the fermion action.

We combine a set of Nsp simulations performed at βi with the number of configurations Ni

where i = 1, · · · ,Nsp. Using Eq. (2.3), the probability distribution function at βi is related to that at
β as

Z−1(βi)w(X ,S, S⃗;βi) = Z−1(βi)e−(Si−S) w(X ,S, S⃗;β ). (2.4)

Summing up these probability distribution functions with the weight Ni,

Nsp

∑
i=1

Ni Z−1(βi)w(X ,S, S⃗;βi) = eS
Nsp

∑
i=1

Ni Z−1(βi)e−Si w(X ,S, S⃗;β ), (2.5)

we obtain

w(X ,S, S⃗;β ) = G(S, S⃗;β , β⃗ )
Nsp

∑
i=1

Ni Z−1(βi)w(X ,S, S⃗;βi) (2.6)

where β⃗ = (β1, · · · ,βNsp) and

G(S, S⃗;β , β⃗ ) =
e−S

∑Nsp
i=1 Ni e−SiZ−1(βi)

. (2.7)

Note that the left-hand side of Eq. (2.5) gives a naive histogram using all the configurations disre-
garding the difference in the simulation parameter (β , κ⃗). The histogram w(X ,S, S⃗;β ) at (β , κ⃗) is
given by multiplying G(S, S⃗;β , β⃗ ) to the naive histogram.

The partition function is given by

Z(β ) =
Nsp

∑
i=1

Ni

∫
G(S, S⃗;β , β⃗ )Z−1(βi)w(X ,S, S⃗;βi)dXdSdS⃗ =

Nsp

∑
i=1

Ni

⟨
G(S, S⃗;β , β⃗ )

⟩
(βi)

. (2.8)

The right-hand side is just the naive sum of G(S, S⃗;β , β⃗ ) obtained on all the configurations. The
partition function at βi can be determined, up to an overall factor, by the consistency relations,

Z(βi) =
Nsp

∑
k=1

Nk

⟨
G(S, S⃗;βi, β⃗ )

⟩
(βk)

=
Nsp

∑
k=1

Nk

⟨
e−Si

∑Nsp
j=1 N je−S j Z−1(β j)

⟩
(βk)

(2.9)
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for i = 1, · · · ,Nsp. Denoting fi =− lnZ(βi), these equations can be rewritten by

1 = ∑Nsp
k=1 Nk

⟨(
∑Nsp

j=1 N j exp[Si −S j − fi + f j]
)−1

⟩
(βk)

. Starting from appropriate initial values of

fi, we solve these equations numerically by an iterative method. Note that, in this calculation, one
of fi must be fixed to remove the ambiguity corresponding to the undetermined overall factor.

The expectation value of an operator X̂ at β can be evaluated as

⟨X̂⟩(β ) =
1

Z(β )

∫
X w(X ,S, S⃗;β )dSdS⃗ =

1
Z(β )

Nsp

∑
i=1

Ni

⟨
X̂ G(S, S⃗;β , β⃗ )

⟩
(βi)

, (2.10)

and the histogram of X is obtained by

w(X ;β ) =
Nsp

∑
i=1

Ni

⟨
δ (X − X̂)G(S, S⃗;β , β⃗ )

⟩
(βi)

, (2.11)

Note that, again, ∑Nsp
i=1 Ni

⟨
X̂G

⟩
(βi)

in the right-hand side is just the naive sum of XG over all the
configurations disregarding the difference in the simulation point βi.

3. Overlap problem and histograms

To study if the multipoint reweighting method is useful in avoiding the overlap problem, we
perform simulations of QCD with degenerate 2 flavors of clover-improved Wilson quarks coupled
with RG-improved Iwasaki glue, at µ = 0. The improvement parameters of the action are the same
as those adopted in Ref. [4]. The simulations are carried out on an 84 lattice at 9 simulation points
(3 β ’s × 3 κ’s) for the test study in this section, and on a 164 lattice at 30 points (6 β ’s × 5 κ’s) in
Sec. 4. The number of configurations for the measurement is 200 at each simulation point.

The action S required in the reweighting method is composed by Wilson loops and lndetM.
The calculation of the fermion part requires large computational cost. In this study, we evaluate
detM by measuring the first and second derivatives of lndetM at several κi’s, where i = 1,2, · · ·,
on each configuration, and interpolate the determinant between κi and κi+1 assuming a quadratic
function, lndetM(κ) = lndetM(κi)+C1(κ −κi)+C3(κ −κi)

2 +C3(κ −κi)
3 +C4(κ −κi)

4. The
coefficients Ca are determined such that the first and second derivatives are consistent with the
measured values at κi and κi+1. The clover term with the coefficient cSW is also evaluated in terms
of its derivatives. Here, because cSW depends on β in our choice, it affects the β -dependence of
observables. However, we find that the effects from cSW are very small in the range of β rele-
vant in our study. We thus approximate the β -dependence of the action by a linear function, i.e.
lndetM(β , κ⃗) = lndetM(β0, κ⃗)+ (β −β0)(dcSW/dβ )(∂ lndetM/∂cSW )(β0, κ⃗) [3]. Note that the
overall constant of lndetM is not needed.

In the left panel of Fig. 1, we show the results for the improved plaquette P = c0W 1×1 +

2c1W 1×2 of the Iwasaki action at β = 1.825, where c1 = −0.331, c0 = 1− 8c1, and W i× j is the
(i× j) Wilson loop. Black dots represent the expectation values of P at the three simulation points
without reweighting. Blue, green and purple curves are the results of the naive reweighting method
using the data at κ = 0.1400, 0.1425, and 0.1440, respectively. Each result of the naive reweighting
method is reliable around the corresponding simulation point, but fails reproducing far away sim-
ulation results. The reason can be easily understood by consulting the histogram of P: Red curve
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Figure 1: Left: The expectation value of P ≡ c0W 1×1 +2c1W 1×2 as a function of κ at β = 1.825. Middle:
The histogram of P at various κ’s obtained by the naive reweighting method using the configurations at
κ = 0.140. Right: The histogram of P by the multipoint reweighting method.
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Figure 2: The β -dependence (left) and κ-dependence (right) of the histogram for N−1
site(∂S/∂β ) and

N−1
site[∂S/∂κ ]SUB ≡ N−1

site[∂S/∂κ − (288Nfκ4/c0)(∂S/∂β )], where Nsite = 84.

in the middle panel of Fig. 1 is the original histogram at (β ,κ) = (1.825,0.140), and green, blue,
magenta and light blue curves are the histograms at κ = 0.1412, 0.1424, 0.1436, and 0.144, respec-
tively, estimated by the naive reweighting method Eq. (2.3) using the data at κ = 0.140. Because
the histograms at κ other than the simulation point is calculated as the product of the reweighting
factor and the original histogram, the histograms are not reliable out of the range of the original
distribution. In fact, the value of P distributes between 1.64 and 1.69. Even when κ is changed by
the reweighting method, the upper and lower bounds of the distribution does not change in Fig. 1
(middle). Since the expectation value is approximately the peak position of the histogram, the
expectation value also cannot go out of the range of the distribution, as shown in Fig. 1 (left).

To enlarge the range of the distribution, we combine the simulation data obtained at κ =

0.1400, 0.1425 and 0.1440 using the multipoint reweighting method explained in the previous
section. The red curve in the left panel of Fig. 1 is the result of the multipoint reweighting method.
We find that the red curve smoothly connects all the direct simulation results with small error bars.
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Figure 3: Left: The pseudoscalar and vector meson mass ratio mPS/mV. Right: The lines of constant physics
for each mPS/mV in the (β ,κ) plane.

In the right panel of Fig. 1, histograms from the multipoint reweighting method are plotted for
κ = 0.1412, 0.1424, 0.1436, and 0.144.

The method is applicable to other observables. The expectation values of ∂S/∂β and

[∂S/∂κ ]SUB ≡ ∂S/∂κ − (288Nfκ4/c0)(∂S/∂β )

are needed in the calculation of the equation of state in the integral method. In the right and
left panels of Fig. 2, we show the β - and κ-dependence of the 2-dimensional histogram of these
quantities using the multipoint reweighting method. The histogram moves as β and κ are varied.
We can compute the expectation values of ∂S/∂β and [∂S/∂κ ]SUB as continuous functions of β
and κ without the overlap problem. Once we obtain physical quantities as continuous functions of
coupling parameters, we can calculate the lines of constant physics in the coupling parameter space
as well as the beta functions.

4. Lines of constant physics and beta functions

In this study, we define the lines of constant physics by fixing the dimension-less ratio of
pseudoscalar and vector meson masses mPS/mV in the (β ,κ) space. On the lattice, we measure
dimension-less observables mPSa and mVa, where a is the lattice spacing. Because these lattice
observables vary as we change β or κ , a is varied when we move along a line of constant physics.
The beta functions ∂β/∂a and ∂κ/∂a are defined through the variation a along a line of constant
physics. The beta functions are needed in the calculation of the equation of state.

The multipoint reweighting method is useful for the calculation of the beta functions because
we can calculate observables as continuous functions of β and κ . Combining the data at 30 simu-
lation points (6 β ’s × 5 κ’s) on the 164 lattice by the multipoint reweighting method, we obtain the
mass ratio mPS/mV plotted in the left panel of Fig. 3. From these data, determine the lines of con-
stant physics for mPS/mV = 0.70, 0.72, 0.74 and 0.76, as shown in Fig. 3 (right). We then calculate
the derivatives, (mVa)∂β/∂ (mVa) and (mVa)∂κ/∂ (mVa)along each line of constant physics. The
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Figure 4: The beta functions: (mVa)∂β/∂ (mVa) (left) and (mVa)∂κ/∂ (mVa) (right).

results are shown in Fig. 4. Combining these beta functions with the measurement of ⟨∂S/∂κ⟩ and
⟨∂S/∂β ⟩ on finite-temperature lattice, we can calculate the equation of state.

5. Conclusions and outlook

We discussed the multipoint reweighting method in a multi-dimensional parameter space to
avoid the overlap problem. Using the method, we can reliably calculate histograms of physical
quantities as well as the expectation values of the physical quantities, as continuous functions
of coupling parameters. These enable us to compute the lines of constant physics and the beta
functions, which are needed in a calculation of the equation of state.

Our final objective is a study of finite density QCD. Using the multipoint reweighing method,
we may absorb the main effect of the chemical potential by a change of β and κ . If so, we may
investigate finite density QCD avoiding the sign problem.
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