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1. Introduction

The QCD equation of state (EoS) is a crucial input in modeling the hydrodynamic evolution
of thermal matter created in heavy-ion collisions. It is well-known that such matter is strongly-
interacting both at the RHIC and at the LHC and therefore calculating the EoS in this domain
requires a non-perturbative first-principles approach such as lattice QCD.

Lattice calculations of the QCD EoS have grown more refined with time. The current state-of-
the-art is continuum-extrapolated results for the equation of state at zero baryon chemical potential
calculated using staggered fermions [1, 2]. With the advent of the Beam Energy Scan (BES) exper-
iment at the Relativistic Heavy Ion Collider (RHIC) however, it has become necessary to extend
these results to moderately large values of the baryon chemical potential µB

1. As is well-known,
such an extension is non-trivial because of the sign problem of lattice QCD [4]. While a complete
solution to this problem is not yet known, various partial solutions exist [6, 5, 7, 8, 9, 10, 11].
Among these, the method of Taylor expansions is the most straightforward [5, 6]. It has the ad-
vantage that the uncertainty coming from the truncation of the Taylor series can be straightfor-
wardly estimated from a knowledge of the next coefficient. Moreover, the various coefficients of
the expansion bear a straightforward interpretation, either as cumulants (diagonal coefficients) or
as correlations (off-diagonals) between conserved charges. Because of this, they can be used to
probe deconfinement [12], explore the degrees of freedom at a given temperature [13, 14] or deter-
mine freeze-out conditions [15]. They can also be determined experimentally from the moments
of various hadron multiplicity distributions [16].

The starting point of this method is the expansion of the partition function in powers of the
chemical potentials, namely

p
T 4 =

1
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With three flavors of quarks, one has three chemical potentials. A change of basis allows us
to express these in terms of conserved charge chemical potentials, namely baryon number, electric
charge and strangeness (µB,µQ,µS). Of these, µQ and µS may be determined as functions of µB by
imposing the constraints coming from the initial conditions in heavy-ion collisions namely, zero
net strangeness (nS = 0) and a fixed Z-to-A ratio (nQ/nB = r) [15]
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We plot s1 for our two lattice spacings in Fig. 1. Its mild cutoff dependence and small errors
enabled us to provide an estimate for the continuum limit in Ref. [17]. This estimate was found to
exceed the predictions of the usual Hadron Resonance Gas (HRG) model below the chiral crossover
temperature. We found that this difference could be accounted for by including in our HRG model
additional, as yet unobserved light and strange resonances which are predicted by both lattice QCD
and the Quark Model [17, 18, 19, 20]. As regards the other coefficients, the coefficient q1 is
negative and only about 1% of s1 for the whole temperature range that we consider. Similarly, both
s3/s1 and q3/q1 are only around 10% in magnitude at T ≈ 150 MeV and not more than 1-2% for
T & 170 MeV [15].

1Specifically, one expects to reach µB ≈ 400-450 MeV at the lowest center-of-mass energies [3].
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Figure 1: (Left) The first Taylor coefficient in the expansion of µS/T . The dashed black line is from an
HRG model containing all the Particle Data Group resonances (henceforth PDG-HRG) while the solid black
line also takes into account additional light and strange resonances coming from the Quark Model [17]
(henceforth QM-HRG). (Center and Right) The first two Taylor coefficients in the expansion of p/T 4. In all
three figures, the shaded yellow region indicates the physical quark mass chiral crossover region, Tc = 154(9)
MeV [23]. r = 0.4 is the value for the Z-to-A ratio in Pb-Pb collisions.

Fig. 1 also shows our results for the first two Taylor coefficients c2 and c4.2 It is seen that
the signal-to-noise ratio drops quickly as we go to higher orders. This is actually due to the sign
problem, which manifests as a noise problem at µB = 0 [21]. To overcome this, we generated
around 100,000-200,000 trajectories for the temperatures near the crossover region. We also used
up to 1,500 random vectors per configuration to determine the operator traces that were required to
calculate the susceptibilities3.

2. First-Order Quantities

From the pressure, the conserved charge, entropy and energy densities can be obtained by
taking derivatives with respect to the temperature

ni

T 3 = T
∂

∂ µi

( p
T 4

)
,

s
T 3 =

[
T

∂

∂T
−4

]
p

T 4 ,
ε

T 4 =
T s+∑i µini− p

T 4 . (2.1)

We get the order-by-order corrections by rewriting these in terms of the cn’s4
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We calculated these derivatives in the temperature range 145 MeV 6 T 6 220 MeV from spline
fits to the cn. We divided the temperature range into intervals 145 MeV < T1 < · · ·< 220 MeV by
choosing breakpoints Ti, and sought to obtain the best possible fit by varying both the number and
the locations of the breakpoints. We used quartic splines instead of the more commonly used cubic
splines because we found that they interpolated the data better and with fewer breakpoints. They
also had the advantage that their second derivatives were smooth rather than merely continuous.

2All odd coefficients are zero at µB = 0 by CP symmetry.
3A list of all the traces that are required for the sixth-order calculation is given in [22].
4The number densities are not directly expressible in terms of the cn’s but must be calculated and fitted separately.
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Unlike the µB = 0 case in which the location of the breakpoints too was determined by the fitting
routine [1], here we chose to vary the breakpoints by hand. We could do this because only a small
number of breakpoints was necessary to get good results, due to both the narrow temperature range
as well as the fact that we fitted the Nτ = 6 and 8 datasets separately.

Figure 2: (Above) Total p/T 4 and (Below) total ε/T 4, to O(µ2
B) and O(µ4

B), for different values of µB/T .
These figures are all for the constrained case with r = 0.4. The dashed and solid black lines are PDG-HRG
and QM-HRG curves respectively.

Once we had finalized the fits, we could add the contributions from different orders to the
µB = 0 results one at a time to obtain the O(µ2

B), O(µ4
B) and O(µ6

B) approximations respectively
for a given value of µB/T . However since our sixth-order susceptibilities were noisy, we will
restrict ourselves to a fourth-order equation of state from now on and use the sixth-order results
just as a cross-check.

Fig. 2 presents our results for the pressure and energy. One sees that the dominant corrections
come from the second-order term for small values of µB/T , just as one might expect. Higher-order
corrections start to become significant beyond µB/T & 2.0. This is also seen from Fig. 3, where we
plot the ratio of second-, fourth- and sixth-order pressure and energy to the zeroth-order result. For
µB/T ' 2.0 and beyond, the ratio starts to depend on the order at which we truncate the expansion.

3. Observables on the Freezeout Curve

From a statistical model fit to hadron multiplicities at freeze-out, one can extract the tem-
perature T f and baryon chemical potential µ

f
B at freeze-out [24]. Moreover, one can parametrize
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Figure 3: (Left)The ratio ∆(p/T 4)/(p/T 4)µB=0 where ∆ represents the finite µB contribution upto second,
fourth and sixth orders for the constrained case with r = 0.4. (Right)The same for ε/T 4. The dashed black
lines are PDG-HRG lines.

Figure 4: The freeze-out temperature and chemical potential as the beam energy is decreased. The vertical
extent of the shaded yellow rectangle is the chiral crossover region for physical quark masses.

(T f ,µ f
B) as functions of the beam energy s1/2

NN as (with x = s1/2
NN in GeV) [3]

T f

T f
∞

=
1

1+ exp
(
1.176− lnx

0.45

) , µ
f

B =
1.303

1+0.286x
GeV. (3.1)

We use T f
∞ = 154 MeV, in accordance with lattice results for the crossover temperature [23].

Fig. 4 shows T f and µ
f

B for a few of the beam energies from the RHIC BES program. By plugging
the values obtained from this parametrization into our expansions, we can determine the values of
various thermodynamic observables at freeze-out as a function of the beam energy. As mentioned
earlier, such an “equation of state along the freeze-out curve” should be useful in the context of the
Beam Energy Scan program.

We present our results for the pressure, energy density and baryon density in Fig. 5, along with
the PDG-HRG and QM-HRG predictions. We see that both p and ε are constant along the freeze-
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Figure 5: Pressure, energy density and baryon number density respectively on the freeze-out curve. Also
shown are the predictions from PDG and QM Hadron Resonance Gas models. Note that once O(µ4

B) cor-
rections are included, both p and ε remain constant along the freeze-out curve down to s1/2

NN ∼ 20 GeV.

out curve for all except the lowest beam energies. In part, this is because the largest contribution
to both these quantities comes from the zeroth order, as a result of which they are more sensitive
to changes in T f than µ

f
B . Note however that it is necessary to include the O(µ4

B) contribution
for the curves to remain flat down to s1/2

NN ∼ 30 GeV. Below this energy, finite-µB corrections start
to become comparable to the zeroth-order values. Similarly, it is necessary to take the O(µ3

B)

corrections into account for nB below this beam energy. We expect that sixth-order corrections
will also have to be taken into account below s1/2

NN ∼ 20 GeV, but better results for the sixth-order
susceptibilities are needed to determine the exact value.

4. Conclusions

We have attempted to extrapolate the QCD equation of state for µB = 0 to nonzero values of
µB through the method of Taylor expansions. We found that by carrying out the expansion to sixth
order, we could obtain reliable results for the pressure and energy density up to µB/T ∼ 2.0 for
temperatures at and above the crossover. Since we still need better statistics for our sixth-order
results, we merely used them as a cross-check in constructing a fourth-order equation of state.
Lastly, by plugging the values of (T f ,µ f

B) obtained from a parametrization to the freeze-out curve,
we found that this fourth-order EoS was useful down to beam energies s1/2

NN ∼ 20 GeV.
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