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1. The density of states

Monte-Carlo methods are one of the most developed tools to study non-perturbatively quantum
field theories from first principles. This approach is very powerful and delivers high precision
results. However its applicability is limited to the case of observables that can be expressed as
vacuum expectation values (vev) over a probability measure. Partition functions are an example
of observables that are not a vev, while at finite density the path integral measure of QCD cannot
be interpreted as a probability measure. In these cases Monte-Carlo methods are either unsuitable
or very inefficient. We propose an alternative method based on the density of states that is free
from the described limitations. Let us consider an euclidean quantum field theory and its partition
function

Z(β ) =
∫
[Dφ ]e−βS[φ ], (1.1)

where φ denotes the fields and
∫
[Dφ ] is the path integral over the field configurations. We define

the density of states with the following functional integral

ρ(E) =
∫
[Dφ ]δ (S[φ ]−E). (1.2)

From the density of state we can recover the partition function via a simple one dimensional integral

Z(β ) =
∫

dEρ(E)e−βE (1.3)

and expectation values of observables O(E) from

〈O(E)〉= 1
Z

∫
dEO(E)ρ(E)e−βE . (1.4)

2. A novel algorithm for the density of states

Wang and Landau proposed a numerical algorithm to compute the density of states in systems
with discrete energy levels [1]. The algorithm is very well known in the Statistical Mechanics com-
munity and has been an important pillar for obtaining remarkable results that would not have been
possible to achieve using standard Monte-Carlo. Despite its success in the Statistical Mechanics
framework it has found very limited applications in Lattice Gauge Theory, the main reason being
that a direct generalization to continuous systems seems not to be very efficient [2, 3]. We propose
a different algorithm based on [4] suitable for continuous systems. The underlying assumption is
that if we consider a small energy interval [E0−∆,E0+∆] the logarithm of the density of states can
be well approximated by a piecewise linear function

ρ(E) = ea(E0)(E−E0)+O(∆). (2.1)

The purpose of the algorithm is to calculate the coefficients a(E), which are related to the density
of states via

a(E0) =
d log(ρ(E))

dE

∣∣∣∣
E=E0

. (2.2)
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Let us consider the expectation value of a function f (E) restricted to the energy interval [E0−
∆,E0 +∆] which we denote with double angular brackets

〈〈 f (E)〉〉a =
1
Z

∫ E0+∆

E0−∆

f (E)ρ(E)e−aEdE. (2.3)

We can choose f (E) = E−E0, which gives

∆E(a) = 〈〈E−E0〉〉a =
1
Z

∫ E0+∆

E0−∆

(E−E0)ρ(E)e−aEdE. (2.4)

If eq. (2.1) is a good approximation we should be able to choose a∗ such that

ρ(E)exp(−a∗E) = constant +O(∆) (2.5)

which inserted in eq. (2.4) yields
∆E(a∗) = 0. (2.6)

The truncated expectation value ∆E(a) can be computed by means of a standard Monte-Carlo
procedure that samples the configurations with weight

W (E) ∝ e−aE(θ(E−E0 +∆)−θ(E−E0−∆)). (2.7)

Our goal is to find a∗ such that this Monte-Carlo procedure gives eq. (2.6), which is a root finding
problem. There are many numerical root finding algorithms that can be found in textbooks. One of
the most used is the iterative Newton-Raphson method. This method starts with a guessed value a0

which is then updated according to the iteration

an+1 = an−
∆E(an)

∆E(an)
′ ∼ an−

3∆E(an)

∆2 . (2.8)

Were ∆E(a) a deterministic and sufficiently well-behaved function then an would converge to the
true root a∗

lim
n→∞

an = a∗. (2.9)

∆E(a) in our case is obtained by a Monte-Carlo procedure and thus it is not a deterministic function.
While the method seems to give the correct answer [4, 5, 6], the deterministic nature of the function
∆E(a) is a necessary hypothesis for the mathematical proof of convergence.

In 1951 Robbins and Monro presented a different algorithm for solving root finding problems
[7] where the function can be expressed as an expectation value. In other words we can drop the
deterministic hypothesis and in place of the latter we ask that we can obtain measurements of the
function m(a) such that

∆E(a) = 〈m(a)〉. (2.10)

The Robbins Monro iteration is given by

an+1 = an− cn∆E(an), (2.11)

where
∞

∑
n=0

cn = ∞;
∞

∑
n=0

c2
n < ∞. (2.12)
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Under some mild assumptions on the function Robbins and Monro proved that limn→∞ an converges
to the true value a∗ almost surely and thus also in probability.

A major advance in understanding the asymptotic properties of this algorithm was the main
result of [8]. Following the author we restrict ourselves to the case

cn =
c
n

; (2.13)

it is then possible to prove that
√

n(an−a∗) is asymptotically normal with variance

σ
2
a =

c2σ2
ξ

2c f ′(a∗)−1
, (2.14)

where σ2
ξ

is the variance of the noise.
In this sense the optimal value of the constant c is

c =
1

f ′(a∗)
. (2.15)

In our particular case we have

∆E(a∗)
′
=

∆2

3
; (2.16)

consequently we adopted the following iteration

an+1 = an−
3∆E(an)

(n+1)∆2 , (2.17)

which is proved to converge to the correct value a∗ and optimal in the sense that it minimizes the
variance in eq. (2.14).

3. Ergodicity

Using the weight in eq. (2.7) we are forcing the system in an energy interval and if the energy
landscape is rugged we are not exploring all the configurations in an energy interval see fig. (1).
A possible solution, in analogy with parallel tempering, has been proposed recently for the Wang-
Landau algorithm [9]. We can consider overlapping energy intervals (see fig. (2)) and simulate
these intervals in parallel. When two simultaneous simulations are in the overlapping region of two
different energy intervals we swap the systems with probability

Psw = min(1,exp(∆a∆E)), (3.1)

where ∆E and ∆a are the differences of energies and of the coefficients a of the two runs at a set
number of iterations. This version of the algorithm satisfies the detailed balance condition and
samples the whole phase space of the theory.
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Figure 1: In red a hypothetical energy landscape, in this case the algorithm is trapped in one of the two
minima.
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Figure 2: Using overlapping energy intervals the algorithm is allowed to sample the whole phase space.

4. Test in 4d U(1) gauge theory

We tested our approach in the 4d compact U(1) gauge theory, with Wilson action. Here the
link variables are points of the complex unit circle, i.e., Uµ(x) = exp(iθµ(x)) with θµ(x) ∈ [−π,π].
As a simple check we computed the plaquette in a 124 lattice using our method, a multi-canonical
simulation [10] and a standard heat-bath algorithm; the results are reported in fig.(4) and they are
in good agreement with each other. For this run we computed the density of states ρ(E) for values
of E in [0.59,0.69] and we divided this interval in 512 subintervals. In each interval, the errors are
determined by a boostrap analysis of 20 independent simulations. The whole computation required
around 512∗18 hours of CPU time.

By means of a large scale investigation on the basis of the Borgs-Kotecky finite size scaling
analysis, it has been established that the system undergoes a very weak first order phase transition
at βc = 10111331(21) [11]. A sign of this transition is the double peaks structure in the action
probability density

P(E)β =
1
Z

ρ(E)exp(βE), (4.1)

which is immediately visible in fig.(??). We also located the pseudo-critical coupling using the
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Figure 3: Plaquette values using different methods for 124 lattice.
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Figure 4: P(E)β for different values of β .

L Cv peak present method Cv peak from [12]
8 1.00744(2) 1.00741(1)
10 1.00939(2) 1.00938(2)
12 1.01025(1) 1.01023(1)
14 1.010624(5) 1.01063(1)
16 1.010833(4) 1.01084(1)
18 1.010948(2) 1.010943(8)
20 1.011006(2)

Table 1: Comparison between the location of the specific heat computed with the proposed method and the
values in [12]. The longest run (204 lattice) required 512∗144 hours of CPU time.

peak of the specific heat for volumes from 84 to 204 and we found a good agreement with [12], see
tab.(1).

5. Discussion and conclusion

In this contribution we presented a novel algorithm to compute the density of states from
first principles in continuous system. The algorithm is mathematically solid and gives correct
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results in the limit of very small energy intervals. There are many potential applications for which
this algorithm is particularly suitable such as first principles studies of monopoles, vortices and
interfaces. Using the density of states it is also possible to transform a high dimensional oscillatory
problem (finite density theories) to a single dimensional oscillatory integral (see [13]). Future
directions include feasibility studies in theories with fermions and a numerical analysis of the
effects due to the finite width of the energy intervals.
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