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1. Introduction

1.1 Motivation and Outline

The main aim of present day high-energy heavy ion physics is to determine medium properties
of the quark gluon plasma or more precisely the size of its transport coefficents [1]. In this context
the ratio 1 /s, i.e. shear viscosity over entropy density, is of special interest as there are strong
arguments for the existence of a lower bound of 1/4x for gauge theories in the strong coupling
limit. This was in particular worked out within AdS/CFT duality [2].

Since decades lattice QCD studies have been published on that topic [3, 4, 5, 6, 7, 8]. However,
some of them suffer from inherent problems in accessing the low energy behaviour of the shear
spectral function due to some properties of the finite temperature integral kernel K(w,t) which
links the spectral functions to Euclidean correlators, the quantities which are accessible by lattice
QCD calculations. These properties make it quite difficult to extract the low energy behaviour of
spectral functions.

In the last years smearing was used very successfully to reduce the influence of high energy
properties of lattice configurations and to reveal low energy properties [9]. In particular, the Wilson
flow proved to be a valuable tool for lattice QCD, e.g. for scale setting and determination of the
anisotropy [10, 11], and for the renormalization of the energy momentum tensor [12, 13]. We try
to employ these methods to increase the sensitivity of the analysis to the low energy part of the
spectral functions.

Using smearing as a noise reduction technique instead of the multi-level algorithm in [7, 8] is
crucial for dynamical simulations, as in that case multi-level algorithms are not available. This is
because the action in full QCD is non-local after integrating out the fermionic degrees of freedom.
So an alternative strategy is required for results with dynamical fermions.

1.2 Transport from Spectral Functions

Information about the viscosity is encoded in correlators of the traceless part ®, of the energy
momentum tensor 7,y. For pure gauge theories it is defined as

1

Opuv(x) = Fuo (x)Fyo (x) — Z5qup6(x)Fp0(x)a (1.1)

where F,y (x) is the field-strength tensor at x = (7,X) and a trace over the suppressed color indices
is understood.
The Euclidean correlators, which can be measured on the lattice, are defined as

Cuvpo(7.0) =T~ [ @™ ((8,(1)0po(0)) ~ (€v (1)) (Op(0))) (12)
These correlators are connected to their spectral functions puv ps(7,q) via an integral transforma-
tion
Cuvpa(.0) = [ dOK(7,0)puv pa(®.q) (13)
cosh(w(t—1/(2T)))
K = 1.4
(.0 =@/ (1.4)
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with the finite temperature kernel K(7, ®). Transport properties then follow from the low energy
limit of the spectral functions via Kubo formulae. For the two channels which are relevant for the
viscosity these are [14, 8]

. pi(o,q) .. pnxn(o,g) 4
lim lim 2222227217 lim lim /=222 — 1.5
(R e W e atte (0

with the bulk viscosity { and the momentum taken parallel to the 3-direction q = ge3. The bulk
viscosity is at the temperatures relevant for phenomenology generally much smaller than the shear
viscosity 1. Therefore also p33 33 can be used to determine the shear viscosity 7.

1.3 Lattice Setup

So far we have performed only a preparatory study for future dynamical simulations. We use
pure SU(3) gauge theory, more precisely, a Symanzik improved gauge action with O(a?) discretiza-
tion errors [15, 16]. One should keep in mind, that pure SU(3) theory is physically very different
from full QCD, e.g. it has a first order phase transition instead of a crossover [17]. The traceless
energy momentum tensor ®y is built directly from the clover lattice field strength tensor Fy;, and
has O(a?) discretization errors. In this effort configurations at temperatures ranging from 0.75 7.
to 4.0 T, were generated for 8 < n, < 16 and aspect ratios from 1 to 8. An update sweep consists
of one heatbath and four overrelaxation steps.

The simulations were performed on the QPACE machine [18] on the Wuppertal site.

1.4 Smearing and the Wilson Flow

Stout Smearing The smearing of configurations before measurement of observables is a widely
used technique in lattice QCD since a long time. The smearing dampens ultraviolet fluctuations
and has a large impact on the statistical error of observables. Keeping the smearing fixed in lattice
units while performing a continuum limit recovers the full theory including the ultraviolet part. A
widely used smearing procedure is stout smearing [19], which we also use in this study.We define
a stout smearing radius in dependence of the stout smearing parameter Ps;o,; and the number of
stout smearing iterations Ny, as

F'smear = A/ 8pStoutNStaut- (16)

Wilson Flow A particularly interesting and promising concept in lattice QCD is the Wilson flow
[9]. It can be used as a tool for understanding topological properties of the gauge fields, as an
alternative method to set the scale in lattice calculations, and as an alternative method to determine
the gauge anisotropy [11, 10].

This flow is generated by infinitesimal stout smearing steps and is therefore a smoothing op-
eration on gauge configurations. This is directly seen by its action on the gauge fields in leading
order of perturbation theory in the bare coupling go [9]

e*Z2/4I

(4mr)?

AL (x) = g0 / Ay, (x— ) A (¥) + O(82), Ki(2) = (1.7)

This makes the smoothing effect explicit with a radius of /8 = rgeqr-
It has also been shown, that all observables measured at finite Wilson flow time are finite
renormalized quantities and in particular with removed discretization errors [9].
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2. Energy Momentum Tensor Renormalization

The traceless energy momentum tensor renormalizes multiplicatively with different renormal-
ization factors for diagonal and off-diagonal entries. Here we only consider diagonal entries of this
tensor and determine this single factor Z%*¢ by matching our lattice quantities to results from ther-
modynamics [20]. In particular we use the value for the renormalized entropy density s = (¢ +p)/T
and calculate the renormalization factor via

T .
SZ —(@) =z (g,,) 2.1

by measuring the unrenormalized value (6;;) on the lattice.

To access renormalized correlators of off-diagonal components we use the general tensor de-
composition of correlators of the energy momentum tensor as given in [3, 7]. For the shear channel
one gets

<®12(T,X)®12(0,0)> :£<(®11 — @22)(T,X)(®11 — @22)(0,0)>. (2.2)

3. Analysis Strategy

3.1 Choice of the Ansatz for the Spectral Function

In this work we use finite momentum data which has to be reflected in the ansatz. For the low
energy range the predictions from hydrodynamics [14] can be used as long as @,q < ©T. For the
relevant channels these predictions imply

P13.13(®,q) wg-0mM ?
- = 3.1
o % 0+ (g (e +p)) -1
P33.33(®.4) wg0T, (e +p)o*
o (@ PR o) o

with the sound attenuation length I'y = (31 + {) /(e + p) and the speed of sound v,(g). To fit the
sound channel spectral function ps33 33 we use the same ansatz based on hydrodynamics, like in [8]
apart from dropping the mid frequency contribution.

3.2 Usage of the Wilson Flow

Throughout this work the Wilson flow is approximated by stout smearing steps. However, in
contrast to the standard usage of the smearing, we keep the smearing fixed in physical units and
model the effect of this on the high frequency contributions directly in the spectral function. For
this we include a weighting function in the spectral representation

C3333.0(7,9) :/o doK(t,0)Wa(w)p3333(@,q). (3.3)

The function Wq (@) depends on the smearing scale Q = 7 /rgn.q.r = 7/+/8t. We choose different
parametrizations of Wq(®) and account for the variations introduced by that in the systematic
error. Infrared quantities like transport coefficients are in general not sensitive to details of the
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parametrization, as it modifies only physics at higher energies than Q. Apart from decreasing the
statistical errors, the smearing suppresses a large part of the high frequency background to the
infrared physics in the spectral function, removes cutoff effects as long as rgueqr > a, and also
increases the number of data points, if one includes different cutoffs in a single global fit.

A remark on the behaviour of the correlator at short Euclidean times for finite flow times is
in order. Following Eq. (1.7) the smearing evolves local operators to non-local ones with approx-
imately Gaussian support in position space for large energies or weak coupling. Considering then
the Euclidean correlator over such smeared operators yields a correlator which is also smeared in
the Euclidean time distance because the Gaussians of the operators factorize. This leads to a nega-
tive curvature of the correlator for Euclidean time separations which are smaller than the smearing
radius. This feature does not arise for the infrared behaviour at length scales much larger than the
smearing radius, which is the relevant one for studying the transport properties of the theory. In the
fits to measure 1 /s, we introduce a parameter T,,;, for the minimal Euclidean time used in the fit.
It is always chosen larger than 7., such that only those parts of the correlator are used, where the
curvature is positive. The exact choice of this parameter has been varied and the resulting change
in /s is incorporated in the total systematic error.

4. Lattice Results

4.1 Discretization Errors and Scaling

In order to demonstrate the effect of removal of finite lattice spacing effects, a series of sim-
ulations at different lattice spacing is performed. Fig. 1 gives as an example the dependence of a
shear channel correlator on lattice spacing for some selected values of the flow time. The plots for
different correlators and for different temperatures exhibit the same features. For small smearing
radii the discretization errors are sizable and the statistical errors are large for large separations in
Euclidean time. For larger smearing radii the values for all the different lattice spacings lie essen-
tially on the same curve and the discretization errors are negligible. The statistical error has been
greatly reduced. The magnitude of the correlator at small Euclidean distances decreased by orders
of magnitude with increasing smearing, just as expected from an increasing loss of the high energy
parts of the spectrum in the spectral function.

Let us note here, that at a finite smearing radius no renormalization is needed. In order to
extract physical information, first one has to normalize the correlators by a procedure completely
analogous to the one in Sec. 2 and then do a limit of sending the smearing radius to zero. We
have not considered this limit procedure in this work, instead to increase the signal we performed
a simultaneous fit to a set of smearing radii in the range 1/4T < rgpeqr < 1/2T. A modification in
finite distance properties should not have a large influence on results for infrared quantities. But it
remains as an important task for the future to perform a controlled limit of the analysis to vanishing
smearing radius.

4.2 Determination of the Viscosity

To access a larger number of small spatial momenta in the region of validity of hydrodynamics,
lq| < 7T, two different spatial lattice sizes are used with aspect ratios r, = ny/n, of 6 and 8. It was
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Figure 1: C(7) = % Jdx(©®1,(0,0)®;,(7,x)) scaling behaviour. Errors are statistical jackknife errors.

checked that finite volume errors are negligible on these lattices. We use the two smallest non-zero
momenta for both lattice sizes. For the determination of the viscosity we use n, = 8 lattices with
between 9.4 - 103 and 5.6 - 10* configurations separated by 32 update sweeps.

The global fit was repeated for different choices of parameters, e.g. the minimum Euclidean
time included in the fit, different initial conditions for the fit parameters, functional forms of the
weight function W, and different included smearings in the fit. In total that amounts to 162 dif-
ferent analyses from which the systematic error of the result is calculated. The statistical error is
calculated with the jackknife method.

T/T. | 15 3.0 45
%% DOF | 122)6) 223)5) 2.1(3)®)
n/s | 0247)©6) 0.32(5)5) 0.43(9)(7)

Table 1: Results of the fits to a form of the spectral function suggested by hydrodynamics. DOF is the
number of degrees of freedom. The first error is statistical, the second systematical.
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Figure 2: The results of the determination of the viscosity from this work compared to previously reported
values in the literature. [21] is based on a functional renormalization group technique and no direct lattice
study.

The preliminary fit results are listed in Tab. 1. The values for 17 /s have quite large statistical
and systematical errors. As can be seen in Fig. 2 this makes a reliable statement on the dependence
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of the viscosity on temperature impossible. Our result for the viscosity is at the current error level
consistent both with a constant and with the temperature dependence given in [21]. The figure also
give the results of previous studies. This work is compatible with these results within the error.
Even though our result has larger errors than the ones based on the multi-level algorithm [7, 8], it
shows that a determination of 1 /s is in principle feasible without the multi-level algorithm using
smearing techniques, i.e. in full QCD.

5. Discussion and Outlook

In this study we used the Wilson flow to increase the sensitivity of lattice studies to the infrared
part of spectral functions as an alternative to multi-level algorithms in full QCD simulations. As test
case this analysis determined the value of 1 /s for different temperatures above T, from quenched
lattice QCD.
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