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Lattice QCD with nonzero chiral chemical potential
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Introduction

It is well known that the vacuum state of QCD for zero temperature or the statistical ensemble
of gauge fields in the non-zero temperature case have nontrivial topological structures due to the
presence of instantons or calorons, respectively, i.e. gluon configurations with nonzero topological
charge [1, 2, 3]. For a long time their existence was only indirectly confirmed by the solution of
the famous UA(1) problem [4, 5].

Recently it was pointed out that the existence of topologically nontrivial gluon configurations
may be observed in experiments on heavy ion collisions [6, 7]. At such experiments blobs of hot
matter – quark-gluon plasma – are assumed to be created in the presence of an external magnetic
field which is expected to be present in non-central collisions. Topological sphaleron transitions
[8, 9, 10] due to the chiral anomaly lead to a nonzero chiral density within the quark-gluon plasma.
This chiral medium is characterized by different densities of left- and right-handed quarks. The
presence of the external magnetic field leads to a nonzero electric current along the direction of
the field - it is the essence of the so-called chiral magnetic effect (CME) [6, 7]. Some indirect
consequences of this effect have been observed at heavy-ion collision experiments [11, 12]. For
the understanding of the CME it is important to study the phase diagram of QCD. For instance,
one can argue that it is crucial for this effect that QCD matter is in the deconfined chirally restored
phase [6, 7].

In this study we concentrate on the question how such phase transitions in QCD as the onset
of deconfinement and chiral restoration are affected by a nonzero chiral density. One of the possi-
ble ways to study QCD with nonzero chiral density are lattice simulations with a chiral chemical
potential µ5. The latter creates a difference between densities of left- and right- handed quarks.
Contrary to an ordinary chemical potential µ , simulations with a chiral chemical potential are not
hampered by a sign problem and can be performed by means of standard Monte-Carlo algorithms
[7].

In our study we perform simulations with the SU(2) gauge group. We consider SU(2) instead
of SU(3) because these theories have similar physical properties while the SU(2) theory requires
less computational resources.

Lattice simulations of QCD with a nonzero chiral chemical potential were already performed
in [13, 14]. The main goal of these articles was the study of the CME, however, the phase diagram
was not systematically studied. The phase diagram with nonzero chirality was already studied by
means of effective models [15, 16, 17, 18, 19] with which we will compare our results.

Details of the simulations

We have performed simulations with the SU(2) gauge group. We employ the standard Wilson
plaquette action

Sg = β ∑
x,µ<ν

(
1− 1

Nc
TrUµν(x)

)
. (1)
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For the fermionic part of the action we use staggered fermions

S f = ma∑
x

ψ̄xψx+
1
2 ∑

xµ

ηµ(x)(ψ̄x+µUµ(x)ψx− ψ̄xU†
µ(x)ψx+µ)+

+
1
2

µ5a∑
x

s(x)(ψ̄x+δŪx+δ ,xψx− ψ̄xŪ
†
x+δ ,xψx+δ ),

(2)

where the ηµ(x) are the standard staggered phase factors: η1(x) = 1,ηµ(x) = (−1)x1+...+xµ−1 for
µ = 2,3,4. Furthermore, a denotes the lattice spacing, m the bare fermion mass, and µ5 the value of
the chiral chemical potential. In the chirality breaking term s(x)= (−1)x2 , δ =(1,1,1,0) represents
a shift to a diagonally located site of a spatial elementary cube, Ūx+δ ,x =

1
6 ∑

i, j,k=perm(1,2,3)
Ui(x+e j+

ek)U j(x+ek)Uk(x) is a gauge factor connecting sites x and x+δ symmetrized over 6 shortest ways
between these sites.

The chirality breaking term is introduced in such a way that it has a correct naive continuum
limit a→ 0

S f → S(cont)
f =

∫
d4x

4

∑
i=1

ψ̄i(∂µγµ + igAµγµ +m+µ5γ5γ4)ψi (3)

The factor s(x) corresponds to the product of "staggered" γ matrices.

γ5γ4 = γ1γ2γ3⇒ 1∗ (−1)x1 ∗ (−1)x1+x2 = s(x) (4)

We have performed simulations with lattice size Nτ×N3
σ = 6×163. The measured observables

are:

• the Polyakov loop

L =
1

N3
σ

∑
n1,n2,n3

〈Tr
Nτ

∏
n4=1

U4(n1,n2,n3,n4)〉 , (5)

• the chiral condensate

a3〈ψ̄ψ〉=− 1
NτN3

σ

1
4

∂

∂ (ma)
logZ =

1
NτN3

σ

1
4
〈Tr

1
D+ma

〉 , (6)

• the Polyakov loop susceptibility

χL = N3
σ

(
〈L2〉−〈L〉2

)
, (7)

• the disconnected part of the chiral susceptibility

χdisc =
1

NτN3
σ

1
16

(〈(Tr
1

D+ma
)2〉−〈Tr

1
D+ma

〉2) . (8)

The Polyakov loop and the corresponding susceptibility are sensitive to the confinement/deconfinement
phase transition, while the chiral condensate responds to chiral symmetry breaking/restoration.

The simulations have been carried out with a CUDA code to run Hybrid Monte Carlo algorithm
on GPU’s. The dependence of the lattice spacing on the coupling parameter β is taken from [20].
The fermion mass is fixed in lattice units at ma = 0.01. For β = 1.8 it corresponds to a pion mass
value mπ ≈ 330 MeV.
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Figure 1: Polyakov loop and chiral condensate versus β for three values of the chiral chemical potential.
Errors are smaller than the data points.

Results and conclusions

We present results for three fixed values of µ5 = 0,460,920 MeV and for different values of
β , while the bare fermion mass remained constant in lattice units ma = 0.01. The results for the
Polyakov loop and the chiral condensate are plotted in Fig. 1. We see the increasing chiral chemical
potential to move the position of the deconfinement and chiral transition, respectively, to larger
values of β . This means that transition temperature increases. Plots for the chiral susceptibility
and the Polyakov loop susceptibility (see Fig.2) confirm this observation. We estimate the change
of the critical temperature to be Tc(µ5)−Tc(0)

Tc(0)
∼ 20% for µ5 = 920 MeV. The results do not show any

splitting between the chiral and deconfinement transitions.
Our results are in contradiction with those of the models studied in [17, 18, 19], where the

critical temperature of the transition was observed to decrease. Furthermore, in these papers at
some critical value of the chiral chemical potential the transition was reported to become first order.
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Figure 2: Polyakov loop susceptibility and chiral susceptibility versus β for three values of µ5. In order to
avoid a complete superposition of data points belonging to different µ5 values we applied a tiny shift along
the β axis.
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In our simulations we do not see such a behavior. However, the results obtained have a tendency
towards a sharper phase transition at nonzero chiral chemical potential. It is worth mentioning that
the behavior described above looks quite similar as that obtained for two-color QCD in an external
magnetic field [20, 21].

Of course, it should be noted that we use the SU(2) gauge group instead of SU(3) and four
flavor degrees of freedom. Moreover, the quark mass at ma = 0.01 is larger than its physical value.
The situation can change, when one arrives at even smaller quark masses. We want to address this
question in a future work.

The authors are grateful to V. I. Zakharov and V. G. Bornyakov for interesting and stimulating
discussions. The simulations were performed at GPUs of supercomputer K100 and computers of
the Berlin group. The work was supported by RFBR grants 14-02-01185-a, 13-02-01387-a, grant
of the president of the RF MD-3215.2014.2 and grant of the FAIR-Russia Research Center.
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