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We study QCD with 2 colour-sextet quarks as a walking-Technicolor candidate. As such it pro-
vides a description of the Higgs sector of the standard model, in which the Higgs field is replaced
by the Goldstone ‘pions’ of this QCD-like theory, and the Higgs itself is theσ . Such a theory will
need to be extended if it is to also give masses to the quarks and leptons. What we are attempting
to determine is whether it is indeed QCD-like and hence walking, or if it has an infrared fixed
point making it a conformal field theory. We do this by simulating its lattice version at finite
temperature and observing the running of the bare (lattice)coupling at the chiral transition, as
the lattice spacing is varied, and comparing this running with that predicted by 2-loop perturba-
tion theory. Our results on lattices with temporal extents (Nt ) up to 12 indicate that the coupling
runs, but not as fast as asymptotic freedom predicts. We discuss our program for studying the
zero-temperature phenomenology of this theory.

QCD with 3 colour-sextet quarks, which is believed to be conformal is studied for compari-
son. Simulations of this theory at finite temperature, on lattices withNt as large as 8 indicate that
the coupling still runs, and shows no sign of approaching a finite limit for largeNt , in contrast to
what is expected for a conformal theory. We are now extendingthese runs toNt = 12. While it
is too early to draw any conclusions from ourNt = 12 runs, there is a hint that the running of the
coupling might have slowed.

Finally we looked at a new candidate theory,SU(2) gauge theory with 3 Majorana adjoint

fermions. However, this did not appear to allow embedding ofthe electroweak group (SU(2)×

U(1)) to give the correct masses to theWs andZ.
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1. Introduction

We study models for the Higgs sector in which the Higgs is composite. In particular, we study
Technicolor models – QCD-like theories with massless fermions, where the Goldstone pion-like
excitations play the role of the Higgs field, giving mass to theW± andZ [1, 2]. Of particular
interest are walking-Technicolor models, where there is a range of mass scales over which the
running coupling evolves very slowly [3, 4, 5, 6] Such models can avoid the phenomenological
problems with naive Technicolor.

QCD with 2 colour-sextet quarks is a candidate walking-Technicolor model.(For a summary
of the properties ofSU(N) gauge theories which lead one to such a conclusion see [7, 8].) We need
to distinguish whether this theory walks or is conformal. It is attractive because it has just the right
number of Goldstone bosons (3) to give mass to theW± andZ, with none left over. Other groups
are studying this model, in particular, DeGrand, Shamir & Svetitsky [9, 10, 11, 12, 13, 14] and
the Lattice Higgs Collaboration [15, 16, 17, 18, 19, 20] We study this theoryat finite temperature
to see if the coupling at the chiral transition evolves as predicted by asymptoticfreedom for a
finite-temperature transition [21, 22].

QCD with 3 colour-sextet quarks, which is believed to be conformal, is studied for comparison
[23]. For a conformal theory, the chiral transition is a first-order bulk transition at fixed coupling
separating the chirally-symmetric conformal theory from the chirally brokenphase, which is a
lattice artifact.

We simulate these theories, latticized with unimproved staggered fermions, usingthe RHMC
method.

If QCD with 2 sextet quarks walks, we need to answer the following questions. Does QCD
with 2 colour-sextet quarks have a light Higgs with standard-model properties? What other light
particles are in its spectrum? Can any of its particles be dark-matter candidates? Do itsS (,T and
U) parameter(s) pass precision electroweak tests.

We have also consideredSU(2) Yang-Mills with 3 Majorana/Weyl fermions. However, we
have been unable to embed the electroweak gauge group (SU(2)×U(1)) into this theory to give
physical masses to theWs andZ.

2. QCD with 2 colour-sextet quarks at finite temperature

We simulate QCD with 2 color-sextet quarks at finite temperature by simulating on an N3
s ×Nt

lattice with Ns >> Nt . SinceT = 1/Nta, increasingNt with T fixed decreasesa. Assuming the
chiral phase transition is a finite-temperature transition, this yields a convenient T, Tχ . Measuring
g or β = 6/g2 atTχ gives a running coupling at a sequence ofas which approach zero asNt → ∞.

2.1 Nt = 12

Much of the past year has been devoted to increasing the statistics for oursimulations on
243×12 lattices at quark massesm= 0.0025 andm= 0.005, close to the chiral transition. For our
largest massm= 0.01 we have extended our simulations at lowβs to determine the position of the
deconfinement transition.
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Because theβ dependence of the chiral condensate is so smooth for the masses we use,we de-
termine the positionβχ of this transition from the peaks in the (disconnected) chiral susceptibility:

χψ̄ψ = V
[

〈(ψ̄ψ)2〉−〈ψ̄ψ〉2] (2.1)

extrapolated tom= 0. V is the space-time volume.

Form= 0.01 in the range 5.7≤ β ≤ 5.9, near the deconfinement transition, we run for 50,000
trajectories for eachβ with βs spaced by 0.02. In the range 6.6≤ β ≤ 6.9, near the chiral transition
we run for 25,000 trajectories perβ with βs spaced by 0.02. Elsewhere in the range 5.7≤ β ≤ 7.2
we run for 10,000 trajectories forβs spaced by 0.1.

For m= 0.005 in the range 6.6 < β ≤ 6.9, we run for 50,000 trajectories perβ at βs spaced
by 0.02. At β = 6.6 we run for 100,000 trajectories. Elsewhere in the range 6.4≤ β ≤ 7.2, we run
10,000 trajectories perβ for βs spaced by 0.1.

For m = 0.0025 in the range 6.7 ≤ β ≤ 6.9, we run for 100,000 trajectories perβ with βs
spaced by 0.02. In the range 6.6≤ β < 6.7, we run for 50,000 trajectories perβ . We are currently
extending our run atβ = 6.68 to 100,000 trajectories. Elsewhere in the range 6.5 ≤ β ≤ 7.2 we
run 10,000 trajectories perβ at βs spaced by 0.1.

While the chiral condensates measured in these simulations suggest that this condensate will
vanish in the chiral limit for large enoughβ values, they do not allow a precise determination ofβχ

where this phase transition occurs. For this we turn to the chiral susceptibilities. Figure 1 shows the
chiral susceptibilities from these runs. The peak of them= 0.0025 susceptibility yields an estimate
of βχ , namelyβχ = 6.77(1). Combining this with ourNt = 8 results yields:

βχ(Nt = 12)−βχ(Nt = 8) = 0.08(2) , (2.2)

significantly smaller than the 2-loop perturbative prediction:

βχ(Nt = 12)−βχ(Nt = 8) ≈ 0.12 . (2.3)

Figure 2 shows histograms of the magnitudes of Wilson Lines form = 0.01 near to the de-
confinement transition. From this we deduce thatβd = 5.81(1) for m= 0.01. Previous experience
indicates that this should be close to the value form= 0.

Table 1 shows our estimates for the positions of the deconfinement (βd) and chiral (βχ ) transi-
tions from these and previous simulations.

Nt βd βχ

4 5.40(1) 6.3(1)
6 5.54(1) 6.60(2)
8 5.65(1) 6.69(1)
12 5.81(1) 6.77(1)

Table 1: Nf = 2 deconfinement and chiral transitions forNt = 4,6,8,12.
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Figure 1: Chiral susceptibilities on a 243 × 12 lat-
tice.

Figure 2: Histograms of magnitudes of Wilson
Lines for βs close to the deconfinement transition
for m= 0.01.

3. Planned simulations and measurements

We plan simulations at zero temperature to understand the phenomenology of this theory,
starting with simulations on a 363×72 lattice atβ values below the deconfinement transition for
Nt = 36. Unfortunately, suchβs are still too small to access the continuum limit. However, we
hope that we will be able to get results which are qualitatively correct. We then plan to move to a
483×96 lattice which will allow us to move to largerβs.

We will measurefπ and the meson spectrum, including disconnected contributions. Here we
will look for a light Higgs, and measure ‘taste’-breaking in the ‘pion’ spectrum. The ‘glueball’
spectrum will be measured since we suspect that the low-lying glueballs could be light, and that
mixing with the mesons could produce a light Higgs-like particle. We will then needto check if
any Higgs candidate has the correct couplings to theW± andZ. We plan to measureS-parameter
contributions, and to determine the scaling behaviour of the chiral condensate to extractγm.

4. QCD with 3 colour-sextet quarks at finite temperature

We simulate lattice QCD with 3 colour-sextet quarks at finite temperature for comparison with
the 2-flavour case. This theory is believed to be conformal with an infrared fixed point. The chiral
transition should be a bulk transition fixed at a finite constantβχ for Nt sufficiently large. We have
simulated this theory atNt = 4, 6 and 8, and are now performingNt = 12 simulations.

ForNt = 6 we simulate on a 123×6 lattice atm= 0.02,m= 0.01 andm= 0.005. Close to the
chiral transition (6.2≤ β ≤ 6.4), at the lowest quark mass (m= 0.005), we simulate atβs separated
by 0.02, with 100,000 trajectories perβ . We estimate the position of the chiral transition as the
peak in the chiral susceptibility form= 0.005.
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For Nt = 8 we simulate on a 163×8 lattice atm= 0.01 andm= 0.005. Close to the chiral
transition (6.28≤ β ≤ 6.5) at the lowest quark mass (m= 0.005) we simulate atβs separated by
0.02. with 100,000 trajectories perβ . We estimate the position of the chiral transition as the peak in
the chiral susceptibility form= 0.005. The results for the positions of the chiral and deconfinement
transitions forNt = 4, 6 and 8 are given in table 2.

Nt βd βχ

4 5.275(10) 6.0(1)
6 5.375(10) 6.278(2)
8 5.45(10) 6.37(1)

Table 2: Nf = 3 deconfinement and chiral transitions forNt = 4,6,8. In each case we have attempted an
extrapolation to the chiral limit.

Since

βχ(Nt = 8)−βχ(Nt = 6) = 0.09(1) (4.1)

we have yet to see evidence of a bulk transition. We are therefore startingNt = 12 simulations
on a 243×12 lattice. Figure 3 shows them= 0.005 chiral susceptibilities forNt = 6, Nt = 8 and
preliminary results forNt = 12.

Figure 3: Chiral susceptibilities forNf = 3, m =

0.005 on 123×6, 163×8 and 243×12 lattices.

Figure 4: Chiral condensates on a 163 × 8 lattice
for m = 0.005 andm = 0.01. The red graphs are
unsubtracted, lattice regulated condensates. The blue
graphs have been subtracted.

Figure 4 shows the chiral condensates, both unsubtracted and subtracted for our 163×8 sim-
ulations. The subtracted condensates use the definition of the Lattice Higgs Collaboration [16]:

〈ψ̄ψ〉sub= 〈ψ̄ψ〉−

(

mV
∂

∂mV
〈ψ̄ψ〉

)

mV=m
, (4.2)
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wheremV is the valence-quark mass. Note, although it is clearer that the subtracted condensate
will vanish in the continuum limit forβ sufficiently large than is the case for the unsubtracted
condensate, it still does not yield an accurate estimate ofβχ .

5. SU(2) gauge theory with 3 Majorana/Weyl colour-adjoint fermions

The symmetries of this theory are easiest to see in terms of 2-component (Weyl) fermions.

L = −
1
4

FµνFµν +
1
2

ψ†iσ µ ↔
Dµ ψ +

m
2

[

ψT iσ2ψ −ψ†iσ2ψ∗
]

(5.1)

whereψ is a 3-vector in colour2 space and in flavour space.
If m= 0, the chiral flavour symmetry isSU(3). The Majorana mass term reduces this flavour

symmetry to the real elements ofSU(3), i.e. toSO(3). Thus whenm= 0 and the chiral symmetry
breaks spontaneously, the chiral condensate is〈ψT iσ2ψ −ψ†iσ2ψ∗〉. and the spontaneous sym-
metry breaking pattern isSU(3) → SO(3). The unbroken generators ofSU(3) are the 3 imaginary
generators. These form a spin-1 representation under the unbrokenSO(3). The 5 broken generators
are the 5 real generators. They, as well as the 5 corresponding Goldstone bosons, form a spin-2
representation ofSO(3).

The problem occurs when one tries to embed the weakSU(2)×U(1) group in such a way as to
give masses toW± andZ. This is easiest to see if we consider the case where the Weinberg angle is
zero. Then we need to embedSU(2) in such a way that all 3 components are broken spontaneously.
Thus we would need to make a set ofSU(2) generators from the 5 realSU(3) generators. However,
theSU(2) algebra requires at least one of its generators to be complex, so this is impossible. The
only Weinberg angle which would work isπ/2 where the photon is pureSU(2) and theZ is pure
U(1).

6. Discussion and Conclusions

We simulate lattice QCD with 2 colour-sextet quarks at finite temperature to distinguish whether
it is QCD-like and hence walks, or if it is a conformal field theory. We run onlattices with
Nt = 4,6,8,12. βχ increases by 0.08(2) betweenNt = 8 andNt = 12. While this increase favours
the walking scenario, it is significantly smaller than the 2-loop prediction of≈ 0.12. Is this be-
cause 2-loop perturbation theory is inadequate for this lattice action andβ? Are there sizable finite
volume corrections? Will the theory finally prove to be conformal?

If walking, this theory is a promising walking-Technicolor theory. It has just the right number
of Goldstone bosons to give masses to theW± andZ, with no extras to be explained away. We have
outlined a program for checking its zero-temperature properties. Does ithave a light Higgs? Does
it satisfy the precision electroweak constraints? Does it have a Dark Mattercandidate? What about
its particle spectrum?

We simulate QCD with 3 colour-sextet quarks which should be conformal. Theincrease in
βχ betweenNt = 6 andNt = 8 is still appreciable (0.09(1)), so we don’t yet have evidence forβχ

approaching a finite constant asNt → ∞. We are now simulating atNt = 12. This shows some
promise.

QCD2 with 3 Majorana/Weyl quarks does not appear to be a Technicolor candidate.
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