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1. Introduction

The SU(2) gauge theory has recently been drawn revised interest in search for a theory beyond
the standard model (SM). As a candidate of walking technicolor [1, 2], which may resolve not
only conceptual drawbacks including the fine-tuning problem but also practical deficit such as
absence of dark matters in the SM, its phase structure with respect to the number of flavors has
been nonperturbatively studied in lattice simulations [3].

In a viewpoint of chiral symmetry breaking, the SU(2) gauge theory is unique as the symmetry
breaking pattern is different from QCD. Because of the pseudo-reality of of the SU(2) group, for
fermions in the fundamental representation, the breaking pattern is SU(2N f )→ Sp(2N f ), while for
SU(N) with N ≥ 3 it is SU(N f )×SU(N f )→ SU(N f ).

The SU(2) gauge theory with fundamental fermions has been already studied on the lattice
with Wilson or staggered fermion [4, 5, 6, 7, 8, 9]. Since we are interested in the chiral dynamics,
it is natural to choose a fermion action which retains the chiral symmetry on the lattice as much as
possible. Although the overlap fermion operator holds an exact chiral symmetry, its numerical cost
and complexity in setup are beyond the computational capability available to us. We adopt in this
work the domain-wall fermion action that keeps numerical cost modest while its chiral symmetry
breaking is under good control.

The domain-wall fermion action is written as

SDW = ∑
x,s,y,s′

ψ̄(x,s)DDW (x,s;y,s′)ψ(y,s′), (1.1)

DDW (x,s;y,s′) = DW (x,y;−M0)δs,s′

−1
2
[
(1− γ5)δx,yδs+1,s′ +(1+ γ5)δx,yδs−1,s′ −2δx,yδs,s′

]
+m

[
PRδx,yδs,1δs′,Ls +PLδx,yδs,Lsδs′,1

]
, (1.2)

where m is fermion mass, PR,L = (1± γ5)/2, Ls the size of 5th dimension, and DW the standard
Wilson kernel with negative mass.

Taking the limit of Ls → ∞ with fixed asLs, the action (1.2) accompanied by Pauli-Villars
ghost term arrives at the overlap fermion operator that holds an exact chiral symmetry on the lattice
expressed as the Ginsparg-Wilson relation.

In Ref. [10], we described our basic strategy based on the result of simulation with the SU(2)
gauge theory with two flavors of fundamental fermions. In this paper, we extend the simulation to
N f = 2, 4, 6, and 8 on a 163 ×32 lattice.

2. Setup of numerical simulation

Numerical simulations were performed on a 163 × 32 lattice with the Iwasaki gauge action
and the standard domain-wall fermion action in the fundamental representation. For the latter,
Ls = 16, M0 = 1.6 are adopted. To generate the gauge configurations, the hybrid Monte Carlo
algorithm is employed with the Omelyan integrator and multi-time step acceleration of two levels.
The simulation code is based on Bridge++ [11] with modification for the SU(2) gauge group and
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m
N f β 0.20 0.10 0.05
2 0.85 2.3419(77) 2.623(14) 2.827(22)

0.90 2.874(15) 3.194(15) 3.472(20)
4 0.85 2.842(21) 3.551(43) 4.215(89)

0.90 3.528(26) 4.702(51) 5.849(74)
6 0.80 2.462(13) 3.403(32) 4.851(83)

0.85 3.396(20) 5.172(67) 8.42(35)
0.90 4.611(46) 6.551(90) 10.61(52)

8 0.80 2.988(36) 4.667(62) 8.33(25)
0.85 4.317(44) 7.15(16) 15.9(1.1)

Table 1: Parameters of numerical simulations and the value of r0 in each ensemble.
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Figure 1: Static fermion potential on the 163 ×32 lattice at β = 0.85 for N f = 2 (left panel) and 8 (right).

the domain-wall fermions. So far, we have compiled at least 1,000 trajectories of unit length after
300 trajectories of thermalization. The parameter sets are listed in Table 1.

Figure 1 shows the result of extracted static potential for N f = 2 and 8. The Wilson loops are
measured at every 5 trajectories with application of spatial link smearing. It is seen that the linear
slope of the potential for N f = 8 is more sensitive to the fermion mass than N f = 2.

The potential is fitted to a standard form, V (r) =C−A/r+σr. The hadronic radius r0, which
is defined through [r2∂V (r)/∂ r]r0 = 1.65, is determined from the result of the fit and listed in
Table 1. While the SU(2) theory does not correspond to the real hadronic physics, just to display
the lattice scale in a familiar manner, we determine the lattice spacing a set by r0 = 0.49 fm.
Figure 2 shows the result of a(r0) for β = 0.85 and 0.90 against the bare fermion mass m in lattice
units. While the m in the horizontal axis does not include the effect of the residual mass, the figure
clearly shows that the fermion mass dependence becomes steeper as N f increases.

For N f = 8 an important question is whether the confining feature is lost or not in the chiral
limit. Since the finite volume effect may become significant for smaller values of m, as indicated
in large values of r0, careful analysis is needed for conclusive result.
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Figure 2: Lattice spacing a(r0) versus the bare fermion mass.

3. Residual mass and meson masses

For the meson spectrum, we note that the numerical cost is reduced thanks to the nature of the
SU(2) gauge group. As proved in Ref. [6], the Wilson fermion operator DW for SU(2) gauge group
has the symmetry

DW (x,y) =C−1(−iσ2)
−1[DW (y,x)]T (−iσ2)C, (3.1)

and thus the corresponding relation for the propagator represents that the baryon and meson corre-
lators are identical. Using γ5-hermiticity, Eq. (3.1) implies for the propagator SW (x,y) = D−1

W (x,y)
that

SW (x,y) =C−1(−iσ2)
−1γ5SW (x,y)∗γ5(−iσ2)C, (3.2)

and thus the solutions of the linear equation for the source vectors of the second color component
are determined from that of the first one. Similar relations also hold for the domain-wall fermion
operator,

DDW (x,s;y,s′) = C−1(−iσ2)
−1RDDW (y,s′;x,s)T RC(−iσ2),

= C−1(−iσ2)
−1γ5DDW (x,s;y,s′)∗γ5C(−iσ2), (3.3)

where Rs,s′ = δLs−s+1,s′ and the relation D†
DW = γ5RDDW Rγ5 was used. Thus a similar relation as

Eq. (3.2) holds for the propagator of the domain-wall fermion. This reduces numerical cost for the
linear equation solver.

In the domain-wall formulation, the residual mass mres serves as a probe to the explicit chiral
symmetry breaking. It is defined through the overlap of the left and right handed modes at the
center of the fifth direction, as

R(t) =
∑x⃗⟨J5q(⃗x, t)P(0)⟩
∑x⃗⟨P(⃗x, t)P(0)⟩

, (3.4)

where
J5q(x) =−ψ̄(x,Ls/2)PLψ(x,Ls/2+1)+ ψ̄(x,Ls/2+1)PRψ(x,Ls/2). (3.5)

An average of R(t) over large t separation is a standard definition of the residual mass. Figure 3
shows the residual mass for the valence fermion mass equal to the dynamical one, mval = msea,
against the lattice spacing. As a general tendency, as lattice spacing decreases, the residual mass
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Figure 3: Residual mass in lattice units versus the lattice spacing a(r0).
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Figure 4: PS and V meson masses versus the valence fermion mass including the residual mass for N f = 2
at (β ,m) =(0.85, 0.05) and (0.90, 0.05). The lines represent the results of linear fits using the smallest three
points except for the case of the V meson at β = 0.85 for which four points used.

decreases for fixed extent in the fifth direction Ls. Besides that, there is no significant N f depen-
dence compared to the β dependence. The residual mass is not negligibly small compared to the
bare mass and causes considerable shift in fermion mass, in particular for the small N f cases in this
work. To perform a simulation in the vicinity of the chiral limit, some improvement to reduce the
residual mass is needed.

We measure the meson correlators in the pseudoscalar (PS), vector (V), connected part of
scalar (S), and axialvector (A) channels with local meson operators in every 10 trajectories. As
noted above, the baryon (diquark) correlators are the identical to the meson ones. Since for large
N f the lattice spacing rapidly changes as fermion mass m is varied, and numbers of values of m is
limited, we plot the meson masses as functions of the valence fermion mass mval for each ensemble.

Figure 4 displays the present results for N f = 2. At m = 0.05, we generate 2,000 trajectories of
gauge configurations. As shown in the figure, the PS and V meson masses show similar behavior
as in QCD. The valence fermion mass in the horizontal axis is now including the residual mass
determined at each mval . The S and A correlators suffer from large statistical fluctuation as seen in
Fig. 5. It seems feasible to measure the masses and decay constants in A channel, while necessary
to increase the statistics and to apply techniques to improve the signal.
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Figure 5: Effective mass plots for the S and A meson correlators for N f = 2 at (β ,m) =(0.90, 0.05).
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Figure 6: PS and V meson masses versus the valence fermion mass including the residual mass for N f = 8
at (β ,m) =(0.80, 0.20) and (0.80, 0.10).

For N f other than 2, the meson spectra are measured in the same manner. On the ensembles,
the PS and V meson masses show the similar behavior to the N f = 2 case. In particular, the
PS meson masses obey the GMOR relation as a signal of spontaneous chiral symmetry breaking.
Figure 6 shows the results for N f = 8. At m = 0.05, the effective mass plots do not exhibit clear
plateau when mval < 0.05. To extract the ground state signal, application of the smearing technique
is now underway.

4. Summary and outlook

The SU(2) gauge theory is interesting because it has several unique properties distinct from
SU(3) and hence its nonperturbative dynamics are not understood as well as SU(3). Motivated
by this, we are performing numerical simulations of the SU(2) gauge theory with many flavors of
chiral fermions, where simulations with smaller N f are aiming at shedding light on chiral symmetry
breaking while large N f simulations are dedicated to the investigation of conformal dynamics.
Qualitative difference has been already seen in the static potential or the mass dependence of the
mP/mV ratio between small and large N f theories.
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Once exploratory studies has been completed, there are many interesting extensions. It is
interesting to study properties at finite temperature, especially the order of the phase transition. As
for the nature of chiral symmetry breaking, the theory with adjoint fermions is attractive since it has
another different breaking pattern, SU(2N f )→ SO(2N f ). Our attempt in the adjoint representation
was presented in [12]. The study of nonperturbative aspects of the Glashow-Weinberg-Salam model
is also one of the possible directions [13]. Thus for future studies, accumulating fundamental data
is clearly important, which is another task to be done in this work.
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