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1. Introduction

New physics beyond the Standard Model (BSM) in the framework of some new strongly-
interacting gauge theory with a composite Higgs mechanism is an attractive BSM scenario with
related lattice work reviewed recently [1]. Of course we hear voices that pursuing the composite
Higgs scenario is overtaken by recent findings at the LHC. After all, a light Higgs-like scalar was
found, consistent with SM predictions, and composite states have not been found below the TeV
scale. In contrast, the voices continue, strongly coupled BSM gauge theories are Higgs-less with
resonances predicted below the TeV scale, just like in the original technicolor idea [2, 3]. The
facts do not seem to support this skeptical view which originates from naively scaled properties
of Quantum Chromodynamics (QCD) to the TeV region. Related old technicolor guessing games
were lacking any credible predictive power close to the conformal window where gauge theories
are nearly scale invariant, in sharp contrast to QCD which is not. In fact, there is no evidence
that compositeness and a light Higgs scalar are incompatible. Recent developments are hinting
compatibility, like in near-conformal gauge theories where a light composite scalar could perhaps
emerge on the Electroweak scale with a resonance spectrum far separated above the TeV scale,
perhaps within the reach of Run 2 at the LHC.

Work in progress is reported here on a particularly interesting gauge theory with a fermion
doublet in the two-index symmetric (sextet) representation of the SU(3) color gauge group [4, 5,
6, 7]. Our observations suggest that the model is very close to the conformal window and a light
composite scalar appears to emerge with 0++ quantum numbers. From chiral symmetry breaking
we find three massless Goldstone pions in the spectrum. With Electroweak interactions turned on,
the model exhibits the simplest composite Higgs mechanism and leaves open the possibility of
a light composite scalar state with quantum numbers of the Higgs impostor emerging as perhaps
the pseudo-Goldstone dilaton-like state from spontaneous symmetry breaking of scale invariance.
Even if scale symmetry breaking is entangled with χSB without dilaton interpretation, a light
Higgs-like scalar state can emerge from the new gauge force close to the conformal window. The
main goal of our Higgs project is to investigate these important problems with ab initio lattice
simulations of the sextet model.

In Section 2 we introduce the Electroweak embedding of the strongly coupled sextet gauge
theory, comment on the intriguing features of the lowest baryon state in the minimal sextet model
and its extensions, and describe the new data sets developed since our last report [8, 9]. In section 3
we investigate Goldstone dynamics and Electroweak scale setting from chiral symmetry breaking
as premier ingredients of the composite Higgs mechanism. We also analyze cutoff dependent taste
breaking effects in the non-Goldstone pion-like spectrum of staggered fermions. In Section 4 we
test the GMOR relation from the spectrum of the Dirac operator and the related chiral condensate.
In Section 5 we present new results on the light 0++ scalar and outline future plans. In Section
6 we begin to develop and test mixed action based improved analysis of χSB with new run plans
at fixed topology to cross over from the p-regime to the epsilon-regime of χSB. In Section 7 we
probe the scale-dependent running coupling from the perturbative UV scale to the scale of chiral
symmetry breaking.
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2. Electroweak embedding and computational framework

Quantum numbers and Electroweak symmetry breaking pattern
The two fermion flavors of the model transform in the complex two-index symmetric (sex-

tet) representation of the SU(3) color gauge group which implies SU(2)L×SU(2)R×U(1) flavor
symmetry for the gauge force of the theory. The fermions are assembled into a left-handed weak
isospin doublet qL and two right-handed weak isospin singlets qR with

q(i, j)L =

[
u(i, j)L

d(i, j)
L

]
, q(i, j)R =

[
u(i, j)R , d(i, j)

R

]
, (2.1)

where i, j = 1,2,3 label the color indices of the symmetric tensor elements. The ABJ anomaly
would spoil the renormalizability of the gauge theory so the fermion gauge coupling must not in-
troduce anomalous Ward indentities. This requires the trace tr({Ta(R),Tb(R)}Tc(R)) to vanish
for fermion flavor group representation R with representation matrix Ta(R). In the sextet model,
the fermions are either doublets or singlets under the flavor group SU(2). The matrix Ta will
be either the Pauli matrix τa or the U(1) hypercharge Y. Since the SU(2) group is anomaly-free,
tr({τ i,τ j}τk) = 2δ ijtr(τk) = 0, it is easy to see that tr(Y) = tr(Y3) = 0 are the two anomaly condi-
tion to satisfy. The absence of gauge anomalies thus requires a traceless weak hypercharge operator
for the left-handed fermion doublet. Choosing the generator of the U(1) group as Y = 2(Q−T3)

for the weak hypercharge Y, with charge Q and the third component T3 of weak isospin, requires
half-unit of charge for the left-handed fermions which form a weak isospin doublet,

q(Q)
L =

[
u(1/2)

L

d(−1/2)
L

]
. (2.2)

The right-handed u-fermion will have hypercharge Y = 1 and the right-handed d-fermion will have
hypercharge Y =−1 with consistent charge assignments

q(Q)
R =

[
u(1/2)

R , d(−1/2)
R

]
, (2.3)

satisfying the tr(Y3) = 0 anomaly condition. The chiral SU(2)L×SU(2)R symmetry of the the-
ory is dynamically broken to the diagonal vector SU(2)V subgroup. This χSB is responsible for
breaking SU(2)W×U(1)Y to U(1)em. The residual SU(2)V symmetry is the electroweak analog of
isospin and the approximate weak isospin invariance of the electroweak force and the new gauge
force ensure that the ρ-parameter is approximately one. There is also an exact U(1) symmetry in
the theory which is unaffected by chiral symmetry breaking protecting the conserved baryon num-
ber. Baryon number and charge conservation are keeping the lightest baryon stable against the new
gauge force and weak decays.

Baryon construction in the sextet model
The charge assignment has intriguing implications for the baryon spectrum of the sextet model.

The sextet representation of fermions with SU(3) color gauge group will impose a symmetric color
wave function for baryon states as three-fermion systems. This is in sharp contrast to QCD where
the color wave function of the nucleon is antisymmetric. The non-relativistic limit of the flavor-
spin-spatial part of the baryon wave function will look like the wave function of triton in terms of
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symmetries [10]. It follows from the construction of Eqs. (2.1-2.3) that the lightest baryons form a
stable isospin doublet of (uud) and (udd) states which carry half-integer charges with opposite sign.
Detailed properties of the sextet baryons with lowest mass in the 3 TeV range were reported at the
conference [11]. Dark matter related relic sextet baryon issues are expected to come into focus only
if the model will deliver a viable composite Higgs mechanism which remains the primary focus of
our investigations.

Dark matter
The lowest stable baryon state in the sextet model is in the fractionally charged massive par-

ticle (FCHAMP) category of dark matter speculations regarding the evolution history of the Uni-
verse [12, 13]. It is difficult and ultimately imperative to estimate the relic abundance of the frac-
tionally charged and stable sextet baryon. Only qualitative arguments can be given that the very
small relic abundance is likely to escape existing experimental limits and theoretical requiem [13].
Sextet baryons and antibaryons are produced in the Electroweak phase transition which is expected
to be of second order with two fermion flavors in the chiral limit. Charge symmetric baryon and
antibaryon densities in thermal equilibrium will continue to decrease well below the critical temper-
ature Tc until at freeze-out temperature T∗ the expansion rate will set the density to its relic abun-
dance level from the solution of the Boltzman equation [14]. The freeze-out temperature and the
related relic abundance level are very sensitive to the annihilation rate of baryons and antibaryons
in the sextet model. As a general trend, the stronger the interaction, the longer the particles remain
in equilibrium (larger x∗ = Mb/T∗) and the fewer survive (∼ e−x∗ ). Earlier technicolor estimates
which were based on scaled up QCD calculations of annihilation cross sections are irrelevant for
the new theory which is close to the conformal window. The expected relic abundance is minuscule
but more quantitative calculations are required with some sense of urgency to settle this interesting
question.

Some surviving sextet baryon asymmetry in the early evolution of the Universe could affect
the above argument based on a symmetric sextet baryon-antibaryon distribution. B-violation as
required by the first of the Sakharov conditions can be associated with the non-Abelian anomaly
of the left-handed fermion current in nontrivial background gauge field configurations outside per-
turbation theory [15]. For the second Sakharov condition, the origin of C and CP violation, if any,
is left undetermined in the new theory and the well-known effects related to sphaleron dynamics
could wash out any early sextet baryon asymmetry generated before the Electroweak phase transi-
tion [15]. Explaining dark matter would probably require an extension of the minimal sextet model
by adding a new lepton doublet with quantum number assignments of the doublets and singlets
following the QCD pattern. It could make the lowest baryon state neutral but still requires efficient
C and CP violation of ill-understood origin. As an alternate extension, a third fermion flavor could
be added which is massive and remains an Electroweak singlet.

Algorithms, codes, and run parameter sets
We use the tree-level Symanzik-improved gauge action for all simulations reported here. The

conventional β = 6/g2
0 lattice gauge coupling is defined as the overall factor in front of the well-

known terms of the Symanzik lattice action. The link variables in the staggered fermion matrix
are exponentially smeared with two stout steps [16]; the precise definition of the staggered stout
action was given earlier in [17] and the RHMC algorithm has been deployed in all runs. The
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fermion flavor doublet requires rooting in the algorithm. For molecular dynamics time evolution
we apply multiple time scales [18] and the Omelyan integrator [19]. We have highly efficient codes
running on BG/Q, gpu, and commodity cluster platforms. Our error analysis of hadron masses
is based on correlated fitting with double jackknife procedure on the covariance matrices [20].
The time histories of the fermion condensate, the gauge field energy on the gradient flow, the
topological charge, and correlators are all used to monitor autocorrelation times in the simulations.
We have new simulation results at β = 3.2 and 3.25 for fermion masses m = 0.002,0.003,0.004
on 323× 64, 403× 80, and 483× 96 lattice volumes. We also have new runs at β = 3.15 with
m = 0.003,0.004,0.006,0.008 and at β = 3.30 with m = 0.005,0.006,0.008,0.010 on 323× 64
lattice volumes.

3. Goldstone spectrum and Electroweak scale setting

If the chiral SU(2)L×SU(2)R symmetry of the model is dynamically broken to the diago-
nal vector SU(2)V three associated Goldstone pions facilitate the minimal realization of the Higgs
mechanism after the Electroweak interactions are turned on. As shown in Figure 1, our results
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Figure 1: The leading order fits are shown at two values of β = 6/g2
0 for the fermion mass dependence of the Goldstone

pion from chiral perturbation theory (χPT) without logarithmic loop corrections. Ignoring taste breaking the fundamen-
tal B parameter of the chiral Lagrangian is given by CM/2 in leading order (LO). The fits of Fπ include the linear NLO
analytic term from χPT. All fits are based on the staggered pion correlator with exact PCAC relation using random wall
noise vectors. We have similar analysis for M2

π and Fπ at β = 3.15 and 3.30 as well.

are consistent with chiral symmetry breaking exhibiting consistent Goldstone pion behavior under
fermion mass deformations. The Electroweak scale in finite lattice spacing units is set from the
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pion decay constant Fπ in the chiral limit with F = 250 GeV in continuum physics notation. The
preliminary results of Figure 1 represent work in progress with moving parts which include contin-
uing refinement of the fitting procedures on our large new data set, the unfinished analysis of taste
breaking in staggered chiral perturbation theory, new runs closer to the p-regime of leading chiral
logarithms, and the influence of a light scalar state on the analysis of chiral perturbation theory.
In Section 6 we will briefly sketch new directions with crossover from the p-regime to the epsilon
regime and Random Matrix Theory (RMT) applying mixed actions in the analysis.

Taste breaking cutoff effects
Since the determination of the Goldstone decay constant F in the chiral limit is critically im-

portant for the determination of the light scalar mass and the separated resonance spectrum, we
will briefly describe taste breaking effects which will influence the final outcome of the analysis.
To illustrate cutoff dependent taste breaking effects, spectra of selected non-Goldstone pion states
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Figure 2: LO fits from the analytic mass dependence of the chiral Lagrangian without logarithmic chiral loop correc-
tions are shown for two non-Goldstone pions at two values of β = 6/g2

0. We have similar fits at β = 3.30. The scPion is
degenerate with the i5Pion (not shown) in the same SO(4) multiplet [21].

are analyzed in Figure 2 with the definition of the relevant correlators and quantum numbers given
in [22, 23]. In the fermion mass range of our data set the taste breaking pattern is different from
QCD where the residual ∆ mass shifts of the non-Goldstome pions are equispaced in the chiral limit
with approximately degenerate SO(4) taste multiplets and with parallel slopes for finite fermion
mass deformations of Goldstone and non-Goldstone pion states [21]. For example, as part of the
equispaced split of degenerate SO(4) multiplets in QCD, the observed approximate split ∆ij ∼ 2∆sc

of two multiplets appears to have collapsed in the sextet model from our fitting procedure.
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The other distinct difference from QCD is the non-parallel slopes which fan out in Goldstone
and non-Goldstone mass deformations of the pion spectrum as shown in Figure 2. While the ∆ ad-
ditive mass shifts are LO taste breaking effects in the chiral Lagrangian [21, 24], the taste breaking
slope corrections δ can plausibly be identified with NLO analytic terms in the chiral analysis [25].
The corrected mass relation is M2

NLO = M2
LO(1+δ ) where δ depends on the taste quantum num-

ber of the pion state. Several relations constrain the δ taste breaking corrections [25]. For example
the relation δπ =−δij immediately implies that the fitted slope of the Goldstone pion must re-
ceive significant taste breaking and cutoff dependent correction in the linear fit of Figure 1 since
the slopes of the Goldstone pion and ijPion fan out considerably in Figure 2. We can infer from
the measured slopes the important relation δπ =−(cij− cM)/(cij + cM) to determine the leading
cutoff correction to the fundamental B parameter of the chiral Lagrangian from the fit parameter
cM as 2B = cM/(1+δπ). The correction factor δπ decreases from -0.207 to -0.087 as β is varied
from 3.20 to 3.30 with decreasing lattice spacing. Work on cutoff corrections to the decay con-
stant F are in progress. The small ∆ mass shifts in the chiral limit and the significant fan-out taste
breaking structure of the slopes led us to generate a new data set below the fermion mass region
m = 0.002−0.006. This new effort crossing over from the p-regime toward the epsilon regime and
RMT using mixed action based analysis will be outlined in Section 6.

4. Chiral condensate and GMOR

The consistency of the fundamental parameters F and B and the direct determination of the
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non-vanishing fermion condensate Σ in the chiral limit is tested by the GMOR relation 2BF2 = Σ

where summation over two fermion flavors is included [26]. Access at β = 3.20 to the numerical
estimate 2BF2 = 0.00497 within the range of a few percent error is provided by the analysis of
data and fits shown in Figure 1 and Figure 2. The slope correction δπ is a significant factor in the
analysis. The Banks-Casher relation [27] relates the condensate Σ to the spectral density ρ(λ ,m)

of the Dirac operator,

ρ(λ ,m) =
∞

∑
k=1
〈δ (λ −λk)〉/V, with lim

λ→0
lim
m→0

lim
V→∞

ρ(λ ,m) = Σ/(2π), (4.1)

where the spectral density is determined as the ensemble average over the Dirac eigenvalue density
in finite volume V. In Eq. (4.1) the condensate Σ =−〈ψ̄ψ〉 for two fermion flavors is determined
by the eigenvalue density. Figure 3 shows a select subset of recent analysis of the spectral density of
runs with 483×96 lattice volume at β = 3.20 for the two lowest fermion masses m = 0.002,0.003.
The lower left panel is the topological history of the m = 0.002 run on the gradient flow at flow
time t = 20. The upper left panel shows the spectral density (with the 2π factor absorbed) for a
select subset of gauge configurations with topological charge Q = 0 and the upper right panel with
Q =−1. The results on the spectral density ρ(λ = 0,m), at the lowest values of λ reached for
the λ → 0 limit, are not sensitive to the two values of the topological charge tested. Agreement
with GMOR is remarkably good from the independent few percent level determination of 2BF2 =

0.00497 as discussed above. The new analysis removes earlier inconsistencies from the sextet
GMOR relation [23]. Continued work is necessary for a more complete analysis of the systematic
effects. Comprehensive finite size scaling analysis, the chiral limit m→ 0 of the spectral density,
and the scale-dependent renormalization of the condensate remain important unfinished goals.

The determination of the spectral density from the low eigenvalues of the Dirac operator has
a limited range and becomes increasingly difficult for larger volumes. In several applications,
like the anomalous dimension of the mode number density, it is important to determine ρ(λ ,m)

for a large range of λ and in large lattice volumes. Recently we developed and tested a new
stochastic method with random noise vectors which is capable of calculating the entire spectral
density function and mode number distribution of the Dirac operator with great efficiency [28].
The method is based on a high precision finite resolution Chebyshev approximation to the Dirac
delta function in Eq. (4.1). At any given value of λ in the spectrum we can extrapolate to infinite
polynomial order in the Chebyshev expansion utilizing well-known asymptotic properties of Tn(λ )

Chebyshev polynomials at fixed λ in the n→ ∞ limit. The expansion used here is different from
the mode number approximation introduced earlier at a fixed value of λ [29].

The lower right panel of Figure 3 displays a typical result on our largest sextet lattice vol-
ume, averaged over gauge configurations for the full eigenvalue spectrum. When magnifying the
low infrared part of the spectral density with the same expansion, the two upper panels show the
convergence rate of the Chebyshev approximation as a function of the the polynomial order when
compared with the direct diagonalization of the Dirac operator. Polynomial order in the n = 6000
range is almost indistinguishable from the data and the extrapolation procedure works well from
lower orders. There is a variety of interesting applications where this method can be further ex-
plored.
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5. The 0++ light scalar and the resonance spectrum

The most important goals of our lattice Higgs project are to establish the emergence of the
light scalar state with 0++ quantum numbers and the resonance spectrum perhaps far separated
from the light composite scalar.

The light scalar state
The f0 meson (in QCD terminology) has 0++ quantum numbers and acts as the scalar state in

the sextet model. Close to the conformal window, the f0 meson of the sextet model is not expected
to be similar to its counterpart in QCD. If it turns out to be light, it could replace the elementary
Higgs particle and pose as the Higgs impostor. Two types of different 0++ operators, the fermionic
one and the gluonic one (0++ glueball), are expected to mix. Such mixing was not included in the
pilot study [8] but becomes an important goal of our ongoing effort.
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Figure 4: The left panel shows earlier results on 323×64 lattice volumes at β = 3.20 [8]. The right panel shows some
representative new result on a large lattice volume using correlated fitting and Principal Component Analysis (PCA).

A particular flavor-singlet correlator is needed to capture the 0++ scalar state with vacuum
quantum numbers. It requires connected and disconnected diagrams of fermion loop propaga-
tors on the gauge configurations. The connected diagram corresponds to the non-singlet correla-
tor Cnon−singlet(t). The correlator of the disconnected diagram is D(t) at time separation t. The
f0 correlator Csinglet(t) is defined as Csinglet(t)≡ Cnon−singlet(t)+D(t). The transfer matrix has
the spectral decomposition of the Csinglet(t) correlator in terms of the sum of all energy levels
Ei(0++), i = 0,1,2, ... and their parity partners Ej(0−+), j = 0,1,2, ... but at large time separation
t the lowest states E0(0++) and E0(0−+) dominate. They correspond to mf0 and mηsc . The rel-
evant non-singlet staggered correlator can be fitted well with non-oscillating a0 contribution and
oscillating πsc contribution, with the non-Goldstone pion πsc discussed in Section 3.

We estimate the connected and disconnected diagrams with stochastic source vectors of fermion
propagators. To evaluate the disconnected diagram, we need to calculate closed loops of quark
propagators. We introduce Z2 noise sources on the lattice where each source is defined on indi-
vidual time-slice t0 for color a. The scheme can be viewed as a “dilution” scheme which is fully
diluted in time and color and even/odd diluted in space. The left panel of Figure 4 shows the earlier
preliminary results from the pilot study on 323×64 lattice volumes at β = 3.20 [8]. From our new
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analysis a representative example of the scalar effective mass fit is shown at β = 3.20 as the right
panel of Figure 4 on a large 483×96 lattice volume and probes the light scalar deeper toward the
chiral limit at fermion mass m = 0.002.

Further work is needed on the light f0 scalar with 0++ quantum numbers. The lower left panel
of Figure 3 indicates large autocorrelation times in the topological history of the RHMC algorithm.
The effects of slowly changing topology on the fitted mass values of f0 are not sufficiently tested
although sensitivity to the topological charge remains within the statistical accuracy of the runs.
Fermion mass deformations of the low-lying f0 state and the Goldstone pion are expected to be
entangled which requires the modification of χPT. Precise extrapolation to vanishing fermion
mass in the chiral limit remains a challenging problem in the presence of the light f0 state.

The emerging spectrum
It is important to investigate the chiral limit of composite hadron states separated from the

Goldstones and the light scalar by finite mass gaps. The baryon mass gap in the chiral limit provides
further evidence for χSB with preliminary results reported at this conference [11]. Resonance
masses of parity partners provide important additional information with split parity masses in the
chiral limit. This is particularly important for consistency with χSB and for a first estimate of the
S parameter when probing the model via Electroweak precision tests [30].

A remarkable spectrum is emerging which is sketched in Figure 5 for illustration only. Al-
though with more work needed to confirm, the sextet model appears to be close to the conformal
window and due to χSB exhibits the right Goldstone spectrum for the minimal realization of the
composite Higgs mechanism with a light scalar separated from the associated resonance spectrum
in the 2 TeV region. Chiral symmetry breaking and a very small beta function, perhaps slowly walk-
ing as hinted by preliminary results in Section 7, are not sufficient to guarantee a light dilaton-like
state as the natural explanation for the emergence of the light scalar. Consistent with our observa-
tions, a light Higgs-like scalar is still expected to emerge near the conformal window as a composite
state with 0++ quantum numbers, not necessarily with dilaton interpretation. This scalar state has
to be light but is not required to match exactly the observed 126 GeV mass. The light scalar from
composite strong dynamics gets lighter from electroweak loop corrections, dominated by the large
negative mass shift from the top quark loop [31, 32, 33].

1 TeV

a1 

rho

light scalar at few hundred GeV?

observed Higgs-like?

EW self-energy shift

within reach of LHC Run 2 ?

4

t

W Z

FIG. 1: Quadratically divergent diagrams contributing to the Higgs mass, with the interaction vertices

given by (2). The gauge boson exchanges are computed in Landau gauge: then the seagull diagrams,

with a single W and Z exchange, are the only quadratically divergent one-loop diagrams with gauge

boson exchanges.

by the breaking of the electroweak symmetry, U = exp
�
iπaTa/v

�
, with covariant derivative DµU ≡

∂µU − igWa
µTaU + ig�UBµT3, 2Ta are the Pauli matrices, with a = 1, 2, 3, and V[H] is the TC Higgs

potential. ∆S is the contribution to the S parameter from the physics at the cutoff scale, and is

assumed to vanish in the Mρ → ∞ limit. The interactions contributing to the Higgs self-energy

are

LH ⊃
2 m2

W rπ
v

H W+
µ W−µ +

m2
Z rπ
v

H Zµ Zµ − mt rt

v
H t̄ t

+
m2

W sπ
v2 H2 W+

µ W−µ +
m2

Z sπ
2 v2 H2 Zµ Zµ . (2)

The tree-level SM is recovered for

rπ = sπ = rt = rb = 1 . (3)

We divide the radiative corrections to the TC Higgs mass into two classes: external contributions,

corresponding to loop corrections involving elementary SM fields, and TC contributions, corre-

sponding to loop corrections involving TC composites only. The latter contribute to the dynamical

mass M0
H, whose size will be estimated in the next section by non-perturbative analysis. In order

to isolate the SM contributions we work in Landau gauge. Here transversely polarized gauge

boson propagators correspond to elementary fields, and massless Goldstone boson propagators

correspond to TC composites. The only SM contributions to the TC Higgs mass which are quadrat-

ically divergent in the cutoff come from the diagrams of Fig. 1. Retaining only the quadratically

divergent terms leads to a physical mass MH given by

M2
H = (M0

H)2 +
3(4πκFΠ)2

16π2v2


−4r2

t m2
t + 2sπ


m2

W +
m2

Z

2




 + ∆M2

H
(4πκFΠ) , (4)

where ∆M2
H

(4πκFΠ) is the scale-dependent counterterm and κ is a order unity number. To be able

to provide a physical estimate we assume that the counterterm is negligible at the scale 4πκFΠ,

5

where FΠ is the TC pion decay constant and κ scales like 1/
�

d(RTC) if the cutoff is identified

with the technirho mass, or is a constant if the cutoff is of the order of 4πFΠ. Provided rt is also

of order one, the dominant radiative correction is due to the top quark. For instance, if FΠ = v,

which is appropriate for a TC theory with one weak technidoublet, then δM2
H ∼ −12κ2r2

t m2
t ∼

−κ2r2
t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH � 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the σmeson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to different gauge groups see [24, 25]. We then discuss possible

effects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without effects from walking.

A. Geometric Scaling of the TC Higgs mass

We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:

F2
Π ∼ d(RTC) m2

TC , v2 = NTD F2
Π , (5)

where FΠ is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N∗TF/2, where N∗TF is the actual number of techniflavors arranged in weak

doublets and therefore N∗TF ≤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:

(M0
H)2 =

3
d(RTC)

1
NTD

v2

f 2
π

m2
σ . (6)
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from light scalar

moving up to 2-3 TeV with refined scale setting
3 TeV

Figure 5: Schematic view of the emerging resonance spectrum. The parameters κ and rt are defined in [31].
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6. Mixed action on the gradient flow and the epsilon regime

The alternative to safe extrapolation from a regime of competing scalar and pion masses to
the massless fermion limit requires crossover to the epsilon regime of χPT at low enough scale
λ where Goldstone dynamics begins to decouple from the scalar state. This is difficult to do and
requires significant resources. To control taste braking we cannot go to lattice spacings larger
than the one set by β = 3.20. The value of F∼ 0.025 at this lattice spacing requires large 483×96
lattice volumes to control the F ·L≥ 1 condition which is necessary for convergent expansion in all
regimes of χPT, including the epsilon regime. Even for our largest V = 483×96 and V = 403×80
lattice volumes control with F ·L∼ 1−1.2 is just barely sufficient. For the lowest fermion mass
m = 0.002 the scaling variable mΣV∼ 100 is very large characterizing the p-regime of χPT we
used earlier in the analysis. Reaching the epsilon regime would require an order of magnitude
decrease in the scaling variable mΣV which presents a considerable algorithmic challenge and
requires substantial resources. Decreasing the fermion mass an order of magnitude to m = 0.0002
would increase the cost, scaling with ∼ 1/m and calling for algorithmic improvements.
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Figure 6: The upper right panel demonstrates the correct index theorem and the lower right panel displays the lowest
eigenvalues in the epsilon regime.

We developed a promising new strategy to overcome the problem by performing χPT analysis
in the crossover to the epsilon regime with partial quenching and a related mixed action. We take
the p-regime gauge configurations of the lowest fermion masses on the largest lattice volumes and
analyze the fermion condensate and the Dirac spectrum after gradient flow times t = 2 or 3 with
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the valence fermion action where the original gauge link variables are replaced with the ones at
flow time t. This strategy can be viewed as a mixed action based analysis. The first encouraging
results are shown in Figure 6. The upper left panel shows the infrared part of the Dirac spectrum
on the original gauge configurations with strong taste breaking evidenced by the absence of de-
generate quartets. After gradient flow time t = 3 degenerate eigenvalue quartets emerge with the
correct count of the topology dependent zero modes from the index theorem showing restored taste
symmetry in the valence action. The lower left panel illustrates the degeneracy of the Goldstone
pion with non-Goldstone pions (scPion in the plot). The lower right panel shows that the epsilon
regime is reached with the scaling variable λΣflowV∼ 10 where the fermion mass is replaced by
the scale of the Dirac spectrum (m→ λ ) and Σflow, not RG invariant, is reduced by almost a factor
of ten.

7. The scale dependent renormalized coupling and beta function

An important and independent consistency condition of the model would be provided by
matching the scale dependent renormalized coupling of the perturbative regime to the scale depen-
dent coupling of the non-perturbative phase associated with χSB. We proposed a gauge coupling
earlier g(µ = 1/L), running with the scale set by the finite volume [34] and defined on the gradient
flow of the gauge field [35]. Since the gradient flow at flow time t probes the gauge field on the
scale

√
8t, the running coupling can be defined as a function of L in finite volume V = L4 while

holding c = (8t)1/2/L fixed: αc(L) = 4π〈t2E(t)〉/[3(1+δ (c)]. This volume dependent coupling
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Figure 7: Two different schemes for scale dependent couplings are illustrated with explanation in the text.
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is particularly suitable to study the perturbative regime and departures from it [34]. The measured
renormalized couplings are very accurate and the scheme defines a one-parameter family which
can be adjusted for different goals [36, 37]. For illustration, preliminary post-conference results of
the step beta function for the sextet model with two flavors are shown in the lower right panel of
Figure 7.

In the non-perturbative phase with χSB we are interested in a scale-dependent and volume
independent renormalized coupling. At fixed lattice size, bare coupling, and fermion mass m we
determine the appropriate flow time t(g2,m) to match any targeted flow-dependent renormalized
coupling g2 calculated from 〈t2E(t)〉. Assuming that the footprint of the operator on the gradient
flow is sufficiently small compared to the Compton wavelength of the pion for p-regime analysis,
the dependence of t(g2,m) on m can be replaced by t(g2,M2

π) in χPT of pion dynamics with linear
dependence of t(g2,M2

π) on M2
π in leading order [38]. Any residual finite volume dependence can

be corrected in χPT.
This strategy is illustrated by the step by step procedure in Figure 7. The upper left panel shows

the determination of the flow time t(g2,m) of the targeted coupling g2 and the upper right panel is
in surprisingly good agreement with the linear behavior in M2

π . At two different lattice spacings
in the m = 0 chiral limit, the lower left panel shows the scale dependent renormalized coupling
g2(t0) as a function of scale variation with t0. A scale dependent and volume independent step beta
function can be determined from this procedure. A more comprehensive analysis of the data is part
of our ongoing investigations including the extrapolation of the step function to vanishing lattice
spacing and matching the two different scale dependent couplings of Figure 7.
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