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1. Introduction

In the space of gauge theories there is a class of asymptotically free models where the running

coupling approaches a non-trivial fixed point in the infrared and long-distance physics are confor-

mal. In terms of the number of fermion flavours this class of models is limited from above by

the loss of asymptotic freedom as the leading coefficient of the perturbative expansion of the β -

function becomes positive. It is also limited from below by the onset of chiral symmetry breaking.

These conformal models have applications in model building beyond the standard model, partic-

ularly in technicolor theories, where the electroweak symmetry is broken by the formation of the

chiral condensate in a strongly interacting model. They are also interesting from the theoretical

point of view of understanding the structure of gauge field theories.

While perturbation theory gives an accurate description of the loss of asymptotic freedom, the

lower limit depends on whether the chiral symmetry is broken before the fixed point is reached in

the infrared. This typically happens at large coupling, where perturbation theory is not expected to

give an accurate description of the model.

In this proceedings we study the running of the coupling in SU(2) gauge field theory with 8

fermions in the fundamental representation. Based on perturbative analysis, this model is expected

to lie within the conformal window, but close to the lower limit. It was studied before in [1] but the

results were inconclusive. The phase structure of the model with staggered fermions was studied

in these proceedings by Huang et al. [2].

The running of the coupling can be studied directly on the lattice by measuring the coupling at

different renormalisation scales, with the help of background fields generated by the Schrödinger

functional [3]. This method has been applied to SU(2) gauge theory with 4–10 fundamental rep-

resentation fermion flavours [4, 5, 6, 7], but with inconclusive results regarding the location of the

conformal window. Because the running is slow in theories close to the conformal window, very

high accuracy is needed to discern the continuum behaviour, making simulations at large volumes

prohibitive.

The gradient flow method [8] promises a definition of the coupling using a considerably less

noisy observable. In this work we use the gradient flow with Schrödinger functional boundary

conditions [9]. It also enables us to control the leading order discretisation errors and hence improve

the continuum limit.

2. Methods and Results

We study the model using a HEX smeared [10], clover improved Wilson fermion action and a

partially smeared plaquette gauge action. The full action can be written as

S = (1− cg)SG(U)+ cgSG(V )+SF(V )+ cSW δSSW (V ),

where V is the smeared gauge field and U is the unsmeared one. As a result of the smearing,

the action is non-perturbatively order a-improved when the Sheikholeslami-Wohlert coefficient

cSW ≈ 1 and we simply choose cSW = 1. The gauge action smearing, tuned by the coefficient cg,

removes the unphysical bulk phase transition from the region of interest in the parameters space.

In this case it is sufficient to choose cg = 0.5.
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We also use Schrödinger Functional boundary conditions, which enables us to measure the

mass anomalous dimension of the model from the same dataset. The gauge fields are set to unity

and the fermion fields are set to zero at time slices x0 = 0,L on a lattice of size L4:

Uk(x) =Vk(x) = 1, ψ(x) = 0 when x0 = 0,L

Uµ(x+Lk̂) =Uµ(x), Vµ(x+Lk̂) =Vµ(x)

ψ(x+Lk̂) = ψ(x).

Here k = 1,2,3 labels one of the spatial directions.

The running coupling can be measured from the gradient flow evolution of the gauge field in

a fictitious flow time along the gradient of the action. In continuum notation the flow is

∂tBt,µ = Dt,µBt,µν ,

B0,µ = Aµ

Bt,µν = ∂µBt,ν −∂νBt,µ +
[

Bt,µ ,Bt,ν

]

.

Here Bt,µ is the flow field parametrised by the flow time t, and Aµ is the original gauge field. The

flow smooths the field, moving toward the minimum of the action. Correlators of the flow field are

automatically renormalised and therefore encode physical properties of the theory [8].

The coupling is measured from the evolution of the field strength

〈E(t)〉= 1

4

〈

Gµν(t)Gµν(t)
〉

.

To the leading order in perturbation theory, it has the form [11] 〈E(t)〉 = Ng2/t2 +O(g4). The

observable can therefore be used to define a renormalised coupling [12],

g2
GF =

t2 〈E(t)〉
N

. (2.1)

We study the running of the coupling with the renormalisation scale by measuring the coupling

with several physical lattice sizes. To quantify the running we use the step scaling function [13]

Σ(u,a/L) = g2
GF(g0,2L/a )

∣

∣

g2
GF (g0,L/a )=u

(2.2)

σ(u) = lim
a→0

Σ(u,a/L).

The step scaling function describes how the coupling evolves when the linear size of the system is

increased. The gradient flow introduces another length scale, l =
√

8t, which we fix to be propor-

tional to the lattice scale as l = ctL.

In this study we use the Symanzik gauge action to generate the gradient flow on the lattice. The

translation symmetry is broken by the boundary conditions and we hope to avoid any unnecessary

finite size effects by measuring the coupling only at the middle time slice,

N(ct ,a/L)g2
GF = t2 〈E(t,x0)〉 , x0 = L/2, t = (ctL)

2/8.

The normalisation factor N for this formulation has been calculated in [9]. Unless otherwise indi-

cated we use ct = 0.4 in our analysis below.
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Figure 1: The gradient flow coupling (2.1) at each β and L/a at ct = 0.4.
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Figure 2: The gradient flow coupling and the interpolating function (2.3).

The measured values of the coupling are shown in figure 1. In order to study the continuum

limit of the step scaling function we need to obtain it at constant values of the coupling at several

lattice sizes. This is achieved with an interpolating function of the form

g2
GF(g0,a/L) = g2

0

1+∑m
i=1 aig

2i
0

1+∑n
i=1 big

2i
0

, m = 4,n = 3, (2.3)

see figure 2. The continuum limit σ(u) can then be approximated by fitting to a function of a/L,

Σ(u,a/L) = σ(u)+ c2(u)(a/L)2. (2.4)

As was observed in[14], the gradient flow coupling suffers from large order (a/L)2 errors.

These can be alleviated with a correction τ0 to the lattice value of the flow time [15]

g2
GF =

t2

N

〈

E(t + τ0a2)
〉

=
t2

N
〈E(t)〉+ t2

N

〈

∂E(t)

∂ t

〉

τ0a2. (2.5)

The effect of the correction on the coupling and the step scaling function can be seen in figures 3 and

4 respectively. As can be seen in figure 4, the correction has a large effect on the (a/L)2 component

4



P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
2
5
8

The gradient flow running coupling in SU2 with 8 flavors Jarno Rantaharju

0 7 14 21 28
L/a

0.53

0.54

0.55

0.56

0.57

g
2

τ=0
τ=0.0276
2-loop

Figure 3: The effect of the correction τ0 on the gradient flow coupling at β = 8.
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Figure 4: The continuum limit (2.4) with several values of the flow time correction τ0 with g2 = 0.6 (left)

and g2 = 2 (right).

of the lattice step scaling function, but only a small one on any higher order components. As

such, the exact value of the correction is not significant, and we can choose a value that is close

enough in the measured range of couplings. In the following results we choose a functional form

to approximate the correction. For example, for ct = 0.4 we use

τ0 = 0.064log(1+g2). (2.6)

We show our current results for the lattice step scaling function and the continuum limit (2.4)

in figures 5 and 6. In each case the running seems to diverge from 2-loop perturbation theory

after g2 ≈ 4, but this is likely to be at least partly a discretisation error since the smallest lattice

diverges more quickly than the larger ones. The results at ct = 0.4 are accurate enough to study the

continuum limit. In this case, the step scaling function follows the perturbative value in the entire
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Figure 5: The step scaling function with ct = 0.4,τ0 = 0.064log(1+u). The plot on the left shows the lattice

step scaling function (2.2) and the one on the right shows the continuous step scaling function calculated

from the fit (2.3) at the largest lattice size and the continuum limit (2.4).
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Figure 6: The lattice step scaling function. On the left, ct = 0.35,τ0 = 0.0375log(1+ 2g2). On the right,

ct = 0.5,τ0 = 0.1log(1+ 0.4g2).

region, up to g2 = 7. In figure 6, we study the sensitivity of the results to the precise value of ct

used.

3. Conclusions

We have studied the running coupling in the SU(2) lattice gauge theory with 8 fermions in

the fundamental representation. Using the gradient flow coupling and the flow time correction 2.5

we have been able to obtain a good continuum limit at small coupling. Even at larger coupling,

the results seem to follow perturbation theory and the running remains slow. There is no direct

evidence of a fixed point, although one could be expected to lie at a large coupling.
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