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1. Introduction

The discovery of a Higgs boson begs for a dynamical explanation of the mechanism of elec-
troweak symmetry breaking (EWSB), which seems to be well described by the Higgs sector of
the Standard Model. The traditional models of physics beyond the Standard Model (BSM), like
minimal supersymmetry, or composite Higgs models, need to be finely tuned in order to agree with
the first measurements of the Higgs mass, quantum numbers, and couplings.

New dynamics is needed in order to explain the observed phenomenology. It is conceivable
that this new dynamics is dictated by the existence of a strongly-interacting IR fixed point of a
gauge theory describing BSM physics.

This possibility can only be explored by developing new, effective tools to study the nonper-
turbative regime of gauge theories. In a series of papers, we have advocated the usage of lattice
simulations to identify possible fixed points, and to characterize them by computing the anomalous
dimensions at the fixed point [1, 2, 3, 4]. In particular, the value of the anomalous dimension for
four-fermi operators is an important ingredient in the description of IR fixed points, and may play
an important role for building models of dynamical EWSB [5, 6, 7, 8, 9, 10]

When searching for fixed points, it has become customary to investigate gauge theories with
fermions in representations of the color group other than the fundamental one. In particular several
studies for the SU(2) theory with two flavors of fermions in the adjoint representation yielded
results that are compatible with the existence of an IR fixed point, see e.g. Ref. [11] and references
therein for a recent review.

The anomalous dimensions in the neighbourhood of a strongly-interacting IRFP can only be
studied in suitably defined nonperturbative renormalization schemes. While the running of the cou-
pling depends on the choice of the scheme, the value of the anomalous dimensions at the fixed point
is scheme independent. Here we discuss the computation of the four-fermi anomalous dimension
using a Schrödinger functional formalism. Results for the running of the coupling, and the mass
anomalous dimension have already been obtained in this scheme [1].

In this note we focus on some of the technical issues that arise when fermions in the adjoint
representation are used. Following closely the techniques developed for fermions in the fundamen-
tal representation, we highlight the new technical problems that arise and discuss their solution.

2. Renormalization pattern for adjoint fermions

The anomalous dimensions of four-fermi operators are extracted from the scale-dependent part
of the renormalization constants for these operators. Under renormalization a composite operator
mixes with all operators of lower or equal dimension that have the same transformation properties
under the symmetries of the theory. Given a regulated theory, a bare composite operator O is
renormalized as follows:

• the operators that have the same transformation properties as O under the symmetries unbro-
ken by the regulator are split into one set {Ok} of operators that have the same transformation
properties as O under all symmetries, including the ones broken by the regulator, and the set
of the remaining ones, denoted {Õn}.
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• operators Ok + cknÕn are constructed that have the desired transformation properties under
the unbroken symmetries of the renormalized theory. The coefficients ckn depend on the bare
coupling and mass. The mass dependence can be constrained using spurionic symmetry.

• in a gauge theory these operators diverge logarithmically only, and the linear combinations
Ô j = Z jk[Ok + cknÕn] are finite as the cutoff is removed.

We shall adopt here a mass-independent renormalization scheme, so that the renormalization con-
stants can be computed in the massless limit, and yield anomalous dimensions that are independent
of the masses. Note that in order to extract the anomalous dimension, only the divergent part of the
renormalization constant is needed.

3. Mixing with adjoint fermions

The mixing pattern of four-fermi operators has been studied in detail for fermions in the funda-
mental representation of the gauge group, see e.g. Ref. [12]. In order to strictly avoid mixing with
lower-dimensional operators, we will consider fermions with different flavors that are indicated by
the suffix ranging from 1 to 4. Taking gauge invariance into account, a convenient basis for the
description of the operator mixing is given by the set of operators:{

(ψ̄1Γ
(r)
1 ψ2)(ψ̄3Γ

(r)
2 ψ4) , (ψ̄1Γ

(r)
1 T A

ψ2)(ψ̄3Γ
(r)
2 T A

ψ4)
}
, (3.1)

where the parentheses indicate the trace over spin and color. The set of matrices Γ
(r)
1 ⊗Γ

(r)
2 , for

r = 1, . . . ,10, spans the set of all Lorentz-invariant spin structures. They can be divided into parity-
even and parity-odd operators:

parity-even parity-odd
γµ ⊗ γµ γµ ⊗ γµγ5

γµγ5⊗ γµγ5 γµγ5⊗ γµ

1⊗1 1⊗ γ5

γ5⊗ γ5 γ5⊗1
σµν ⊗σµν σµν ⊗ σ̃µν

(3.2)

From now on we will use the straightforward notations VV, AA, SS, PP, TT; VA, AV, SP, PS, TT̃
for the above operators.

In this note we focus on the specific issues that arise when working with fermions in the adjoint
representation of the gauge group. For fundamental fermions the generators of the gauge group in
Eq. 3.1 can be eliminated using the trace identity:

(T A)αβ (T
A)γδ =

1
2

δαδ δβγ −
1

2N
δαβ δγδ , (3.3)

and a Fierz rearrangement of the resulting expressions. These are the usual Fierz identities in the so-
called particle-antiparticle channel. As a result only operators of the form (ψ̄1Γ

(r)
1 ψ2)(ψ̄3Γ

(r)
2 ψ4),

and (ψ̄1Γ
(r)
1 ψ4)(ψ̄3Γ

(r)
2 ψ2), which are diagonal in color, are required when working in the funda-

mental representation.
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The trace identity Eq. 3.3 depends on the fermion representation. In particular the correspond-
ing identity for fermions in the adjoint representation of SU(2) is:

(T A)αβ (T
A)γδ = δαδ δβγ −δαγδβδ . (3.4)

The structure of the color indices in the right-hand side of this equation suggests that the Fierz
identities in the particle-particle channel are also needed in order to rewrite the operators containing
the generators T A. As a result, the following operators form a basis for describing the mixing of
dimension six four-fermi operators:

O(1)
Γ1Γ2

= (ψ̄1Γ1ψ2)(ψ̄3Γ2ψ4) ,

O(2)
Γ1Γ2

= (ψ̄1Γ1ψ4)(ψ̄3Γ2ψ2) ,

O(3)
Γ1Γ2

= (ψ̄1Γ1Cψ̄
T
3 )(ψ

T
2 CΓ2ψ4) ,

O(4)
Γ1Γ2

= (ψ̄1Γ1Cψ̄
T
3 )(ψ

T
4 CΓ2ψ2) ,

(3.5)

where Γ1⊗Γ2 is any of the spin structures in Eq. 3.2.
The operators O(3) and O(4) are the same up to a sign that depends on the spin structure

involved. However, for bookkeeping purposes, it is convenient to keep the operators O(4) in the
basis, and only remove them at the end of the discussion.

The transformation properties of these operators under a set of discrete symmetries of the
action allow us to constrain the mixing pattern further. The symmetries used here are charge con-
jugation, parity, and the exchange of flavor indices. They are denoted respectively by C, P, and Skl .
The latter denotes the exchange of flavor k and l, while all other flavors are left unchanged.

As discussed above, the basis operators split into a parity-even and a parity-odd sector. The
mixing pattern in the parity-odd sector is deduced by classifying the operators according to their
transformation properties under S24, C1234 = CS12S34, and C1423 = CS14S23. We obtain the fol-
lowing sets of operators, characterized by the eigenvalues of C1234 andC1423, and closed under
renormalization.

• The sector (C1234 =−1,C1423 =−1) contains four operators:

Q±1 = Q(1)[VA−AV ]±Q(2)[VA−AV ] (3.6)

A±1 = Q(3)[SP−PS]±Q(4)[SP−PS] . (3.7)

The superscript ± indicates operators that are respectively even and odd under S24. Under
renormalization: (

Q1

A1

)±
R

=

(
ZQ1Q1 ZQ1A1

ZA1Q1 ZA1A1

)±(
Q1

A1

)±
, (3.8)

where the suffix R denotes the renormalized operators. It is easy to check that A−1 = 0, and
therefore the operator Q−1 renormalizes multiplicatively.
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• The sectors (C1234 =−1,C1423 =+1), and (C1234 =+1,C1423 =−1) contain eight opera-
tors that can be recombined into eigenstates of S24:

Q±2 = Q(1)[VA+AV ]±Q(2)[VA+AV ] (3.9)

A±2 = Q(3)[VA+AV ]±Q(4)[VA+AV ] (3.10)

Q±3 = Q(1)[SP−PS]±Q(2)[SP−PS] (3.11)

A±3 = Q(3)[VA−AV ]±Q(4)[VA−AV ] . (3.12)

The even and odd sectors under S24 do not mix, leading to the following mixing matrices:
Q2

A2

Q3

A3


±

R

=


ZQ2Q2 ZQ2A2 ZQ2Q3 ZQ2A3

ZA2Q2 ZA2A2 ZA2Q3 ZA2A3

ZQ3Q2 ZQ3A2 ZQ3Q3 ZQ3A3

ZA3Q2 ZA3A2 ZA3Q3 ZA3A3


±

Q2

A2

Q3

A3


±

. (3.13)

• The sector (C1234 =+1,C1423 =+1) contains the remaining eight operators. They can be
rearranged in eigenstates of S24:

Q±4 = Q(1)[SP+PS]±Q(2)[SP+PS] (3.14)

A±4 = Q(3)[SP+PS]±Q(4)[SP+PS] (3.15)

Q±5 = Q(1)[T T̃ ]±Q(2)[T T̃ ] (3.16)

A±5 = Q(3)[T T̃ ]±Q(4)[T T̃ ] . (3.17)

The matrix describing the mixing of these operators under renormalization is similar to the
one in Eq. 3.13.

4. Correlators in the Schrödinger functional scheme

The anomalous dimensions are evaluated by computing the scale dependence of the renor-
malization constants in the Schrödinger functional (SF) renormalization scheme [13]. We use the
implementation of the SF introduced in Refs. [14], adapted for adjoint fermions in Ref. [1]. We use
the standard Wilson action for fermions in the adjoint, following Ref. [15].

The strategy to compute the anomalous dimensions is analogous to the one used for funda-
mental fermions in Refs. [16, 17], which requires the computation of correlators of a four-fermi
operator Q with boundary fields O and O ′:∫

d3x〈O ′53[ΓC]Q(x)O21[ΓA]O45[ΓB]〉 . (4.1)

The boundary fields O and O ′ are:

Oab[Γ] = ∑
y,z

(
ζ̄a(x)Γζb(z)

)
, (4.2)

O ′ab[Γ] = ∑
y,z

(
ζ̄
′
a(x)Γζ

′
b(z)

)
, (4.3)
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where the primed and unprimed quantities refer to fields at the t = L and t = 0 boundary re-
spectively. These correlators are all constructed from contractions of bulk-to-boundary correla-
tors, denoted H(x) and H ′(x), and boundary-to-boundary correlators, denoted by H . Explicit
expressions for these correlators can be found in Ref. [18]. For Q = (ψ̄1Γ1ψ2)(ψ̄3Γ2ψ4), and
Q = (ψ̄1Γ1ψ4)(ψ̄3Γ2ψ2) the contractions required are identical to the ones that appear with funda-
mental fermions. For instance, for the latter four-fermi operator, the correlator in Eq. 4.1 is given
by:

W2 =−
∫

d3x〈tr
[
γ5H1(x)†

γ5Γ1H4(x)ΓBH5ΓCγ5H ′3(x)
†
γ5Γ2H2(x)ΓA

]
〉G . (4.4)

However, because we are now working with fermions in the adjoint representation, the opera-
tors Q span the wider basis discussed in the previous Section, which suggests that new correlators
are needed that were not computed for the case of fundamental fermions. These are the correlators
where:

Q = (ψ̄1Γ1Cψ̄
T
3 )(ψ

T
4 Γ2ψ2) . (4.5)

It can be shown that these operators give rise to contractions that are identical to the ones needed
for fundamental fermions, up to permutations of the matrices that determine the spin structure of
the operator Q. For example, the operator Q in Eq. 4.5 leads to:

W3 ∝

∫
d3x〈tr

[
γ5H1(x)†

γ5Γ1H ′3̃(x)ΓC(γ5H5̃γ5)ΓBγ5H4̃(x)
†
γ5Γ2H2(x)ΓA

]
〉G , (4.6)

where we introduced the propagator for the charge conjugate flavor:

CH f (x)TC = γ5H†
f̃
γ5 , (4.7)

C
(
γ5H f (x)†

γ5
)T

C = H f̃ (x) . (4.8)

The expression for W3 is readily related to the contractions that appear in W2 above, after swapping
Γ1 and Γ2. Having computed all the possible contractions for the W2 trace, W3 can be reconstructed
without further computations. Therefore all the ingredients are in place to complete the numerical
investigation of the anomalous dimension.

5. Conclusion

In this note we have presented some of the peculiar questions that arise when computing
anomalous dimensions using the SF and adjoint fermions. We discussed in detail the answer to
these questions, showing that the case of adjoint fermions can be dealt with in a way that resembles
the solution for the case of fundamental fermions. Extra care is needed when constructing the basis
of operators, and when inserting these operators into SF correlators.

A detailed account of our studies is in preparation.
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