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〈ψ̄ψ〉 vs. N f at g = ∞ Joyce C. Myers

1. Introduction

Lattice diagrammatic techniques can be valuable tools to obtain insight into the strong cou-
pling limit of QCD and related theories. We consider a particular diagrammatic approach which
was introduced in the 80’s to study chiral symmetry breaking in QCD at infinite coupling, as
N f → 0, in [1], and then further developed in [2]. More recently this approach has been picked
up again to address the question of chiral symmetry restoration in the case of QCD with a large
number of fermion flavours N f . In particular, the simulation results in [3] for the chiral condensate
at infinite coupling as a function of N f show evidence of a first order transition to a chiral symme-
try restored phase at a critical value of N f ∼ 13 staggered flavours. Although such a transition is
well documented at more moderate coupling strengths, its presence at infinite coupling came as a
surprise, because analytical calculations based on a 1/d expansion [4], or mean field [5], suggested
that chiral symmetry would remain broken for all N f at infinite coupling. The lattice diagram-
matic technique of [1, 2] was then reintroduced and extended to account for contributions arising at
nonzero N f in [6]. There are two solutions for the normalised chiral condensate as a function of N f

obtained in [6]. One of these solutions matches onto [2] in the N f → 0 limit, where the normalised
chiral condensate goes to ∼ 0.66 as N f → 0, then increases in magnitude as N f increases. The
other solution goes to infinity as N f → 0, and decreases as a function of N f . For both solutions,
there is a common critical value of N f ∼ 10.7, beyond which only complex solutions for the chiral
condensate exist. It would be good to understand this better. The idea of this note, and of our recent
longer paper in [7], is to develop a procedure, inspired by [6], which can be used to calculate the
chiral condensate by collecting the contributions from all possible diagrams which can be formed
out of a truncated number of sub-diagram types.

2. 〈ψ̄ψ〉 at g = ∞

As in [6], we begin by generalising the procedure in [2] to incorporate contributions which
arise at nonzero N f . The iterative procedure we employ to generalise [2] is different from that of
[6], and we summarise it below using the notation of [2, 6].

Integrating out the fermion fields puts the chiral condensate in the form

〈ψ̄(x)ψ(x)〉=− lim
m→0

tr

∫ dU det
[
1+K−1M(U)

][[
1+K−1M(U)

]−1 K−1
]

xx∫
dU det [1+K−1M(U)]

 , (2.1)

with
Mxy ≡

1
2 ∑

µ

[
γµUµ(x)δy,x+µ̂ − γµU†

µ(x− µ̂)δy,x−µ̂

]
, Kxy = mIN f INcδxy . (2.2)

for µ = 1, ...,d. The form of 〈ψ̄ψ〉 in (2.1) suggests expanding in powers of K−1M, resulting in

det
[
1+K−1M

]
= exptr

[
∞

∑
n=1

(−1)n+1

n
(K−1M)n

]
, (2.3)

[[
1+K−1M

]−1
K−1

]
xx
=

1
m

[
∞

∑
n=0

(−1)n(K−1M)n

]
xx

. (2.4)
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The presence of the trace in (2.3) and (2.1) allows for simplifications using tr
[
odd # of γµ ’s

]
= 0,

such that only contributions from terms with (K−1M)n for n even are nonzero. In addition, due to
the SU(Nc) integrals over the U’s, the only nonzero diagrams are those where each link has UmU†n,
for some m, n, such that m−n≡ 0 mod Nc.

Following [2] the normalised chiral condensate can be put in the form

1
NsN f Nc

〈ψ̄ψ〉=− lim
m→0

1
m

∞

∑
L=0

(−1)L A(L)
(2m)2L , (2.5)

where A(L) is the contributions from all graphs with 2L links which start and end at some site x.
A general graph can be built out of irreducible graphs with less links (if the graph is not already
irreducible). Specifically, an irreducible graph cannot be separated into smaller graphs which start
and end at x.

x

Irreducible

x

Reducible

To obtain the contribution of all general diagrams A(L) with 2L links, it is necessary to take
all possible combinations of irreducible graphs I(l) of 2l links, which form a diagram of 2L links,

A(L) =
L

∑
l=1

I(l)A(L− l) , L≥ 1; A(0) = 1 , (2.6)

where the irreducible graphs can begin with an area-0 contribution, a) , or an area 1 base diagram,

such as b) , or ... . The first four I(l) are

I(1) = = Ia(1) = 2d , I(2) = = Ia(2) = 2d [Ia(1) â0] ,
(2.7)

I(3) = + = Ia(3) = 2d
[
Ia(2)â0 + Ia(1)2â2

0
]

,

(2.8)

I(4) = + + 2 + +

= Ia(4)+ Ib(4) = 2d
[
Ia(3)â0 +2Ia(1)Ia(2)â2

0 + Ia(1)3â3
0
]
−4d(d−1)N f

Nc
,

(2.9)

... . (2.10)

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
2
6
1

〈ψ̄ψ〉 vs. N f at g = ∞ Joyce C. Myers

We have defined Ia(l) as all irreducible graphs of length 2l starting with a) , Ib(l) as all irreducible

graphs of length 2l starting with b) , etc. The x̂n are defined as x̂n ≡ xn
dx

, where xn is the number
of ways of attaching a type x diagram to an area n diagram, defined to reduce over-counting, and
dx is the total dimensionality of a type x diagram. For example, â0 =

2d−1
2d , b̂0 =

4(d−1)2

4d(d−1) . More x̂n

are defined in appendix A of [7]. In general the I(l) can thus be put in the form

I(l) =2dF0(l−1)−4d(d−1)
N f

Nc
F1(l−4)7 + ... , with I(0) = 0 , (2.11)

where Fn(L) represents all possible graphs of length 2L which start and end on a site on a base
diagram of area n. The Fn are composed of all possible combinations of irreducible graphs which
add up to 2L links,

Fn(L) = ∑
li=1,2,...,
k j=4,8,...,

∑ li+k j=L−1

Ia(l1)Ia(l2)...Ia(lp)Ib(k1)Ib(k2)...Ib(kq)... âp
n b̂q

n... , with Fn(0) = 1 . (2.12)

The generating function for all irreducible graphs, including the mass dependence, is

WI =
∞

∑
l=0

(
− 1

4m2

)l

I(l) =Wa +Wb + ... , (2.13)

where Wa is all irreducible graphs starting with an a-type base diagram , Wb is all irreducible

graphs starting with a b-type base diagram , etc. Using (2.12) and (2.11) gives

Wa = 2dx
∞

∑
n=0

[
â0Wa + b̂0Wb + ...

]n
=

2dx

1− â0Wa− b̂0Wb− ...
, (2.14)

Wb =−4d(d−1)
N f

Nc
x4

[
∞

∑
n=0

[
â1Wa + b̂1Wb + ...

]n
]7

=
−4d(d−1)N f

Nc
x4

(1− â1Wa− b̂1Wb− ...)7
, (2.15)

... , (2.16)

where x ≡ − 1
4m2 and the “..." contain irreducible graphs starting with higher order (in 1

m ) base
diagrams. The chiral condensate is obtained by taking all possible combinations of all possible
irreducible diagrams. That is

〈ψ̄ψ〉
NsN f Nc

= lim
m→0

1
m

(
1

1−WI

)
. (2.17)

It is possible to obtain a simpler system of equations than (2.14) - (2.16) by working in the massless
limit. One can introduce the variables gx ≡−2mWx

dx
, such that, taking m→ 0,

ga =
1

a0ga +b0gb + ...
, gb =

N f
Nc

(a1ga +b1gb + ...)7 , gc =

N f
Nc

(a2ga +b2gb + ...)11 , ... . (2.18)

The chiral condensate can then be obtained from g≡ daga +dbgb + ..., using

〈ψ̄ψ〉
NsN f Nc

=
2
g
. (2.19)

The prefactors in the numerators of (2.18), and the powers of the quantity in the denominators need
to be determined for each diagram type. The total contribution of a diagram includes

4
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• A factor 1
i!(−N f Ns)

i, for a number i, of overlapping closed internal loops,

• A mass factor
(
− 1

4m2

)n, for n pairs of links,

• (−1)k for k permutations of γ matrices,

• A factor containing the result obtained by performing the group integrations,

• A factor containing the dimensionality of the graph.

Group integrals for overlapping links of the form , or are nonzero ∀Nc, given by [8, 9, 10, 11]∫
SU(Nc)

dU U b
a (U†) d

c =
1

Nc
δ

d
a δ

b
c , (2.20)

∫
SU(Nc)

dU U b1
a1

U b2
a2

(U†) d1
c1
(U†) d2

c2
= 1

2Nc(Nc+1)

(
δ

d1
a1

δ
d2
a2
+δ

d2
a1

δ
d1
a2

)(
δ

b1
c1

δ
b2
c2
+δ

b2
c1

δ
b1
c2

)
+ 1

2Nc(Nc−1)

(
δ

d1
a1

δ
d2
a2
−δ

d2
a1

δ
d1
a2

)(
δ

b1
c1

δ
b2
c2
−δ

b2
c1

δ
b1
c2

)
.

(2.21)

For finite Nc, for example for SU(3), integrals of the form∫
SU(Nc)

dU U b1
a1
· · ·U bNc

aNc =
1

Nc!
εa1···aNc

ε
b1···bNc . (2.22)

are needed. These rules are sufficient to evaluate the diagrams we will use, including

a) b) d)

g) .

(2.23)

The specific contributions of these (and other) diagrams are given in [7].

3. Group integration with Young Projectors

To calculate higher order diagrams one needs to evaluate integrals of the general form

In ≡
∫

SU(Nc)
dU Uα1

β1 ...Uαn
βn(U†)γ1

δ1 ...(U†)γn
δn (3.1)

Any nonzero integral including some combination of U , U† can be converted to this form using
U b1

a1
= 1

(N−1)! εa1a2···aN εb1b2···bN (U†) a2
b2
· · ·(U†) aN

bN
and (U†) b1

a1
= 1

(N−1)! εa1a2···aN εb1b2···bNU a2
b2
· · ·U aN

bN
.

Calculating the direct product of n U’s (U†’s) leads to a direct sum of representations R (S). The
integral can be obtained from the Young Projectors P of these representations using [11]∫

SU(Nc)
dU Ra

b(S†)c
d =

1
dR

(PR)a
d(PS)c

b
δRS . (3.2)

5
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Consider for example the integral in (3.1) with n = 2. The direct product Nc⊗Nc is

α1 ⊗ α2 = α1 α2 ⊕
α1

α2
. (3.3)

The Young projectors are thus formed by symmetrising, and antisymmetrising in α1 and α2,

PS
α1α2

β1β2 =
1
2

(
δ

β1
α1 δ

β2
α2 +δ

β2
α1 δ

β1
α2

)
, PAS

α1α2
β1β2 =

1
2

(
δ

β1
α1 δ

β2
α2 −δ

β2
α1 δ

β1
α2

)
. (3.4)

The resulting integral is

I2 =
2

Nc(Nc +1)
PS

α1α2
δ1δ2PS

γ1γ2
β1β2 +

2
Nc(Nc−1)

PAS
α1α2

δ1δ2PAS
γ1γ2

β1β2 . (3.5)

More involved examples (I3, I4) are worked out in [7].

4. Higher dimensional representations

Higher dimensional representations can be written in terms of the fundamental and anti-
fundamental. For example, the symmetric (US)a

b, for a,b = 1, ...,dS, is given by

(US)(α1α2)
(β1β2) = (PS)α1α2

γ1γ2Uγ1
δ1Uγ2

δ2(PS)δ1δ2
β1β2 =

1
2

(
Uα1

β1Uα2
β2 +Uα1

β2Uα2
β1
)
. (4.1)

The antisymmetric (UAS)m
n, for m,n = 1, ...,dAS, is given by

(UAS)[α1α2]
[β1β2] = (PAS)α1α2

γ1γ2Uγ1
δ1Uγ2

δ2(PAS)δ1δ2
β1β2 =

1
2

(
Uα1

β1Uα2
β2−Uα1

β2Uα2
β1
)
. (4.2)

The adjoint (UA)a
b, for a,b = 1, ...,dAd j, can be written as

(UA)a
b = 2Tr

(
UtaU†tb

)
, (4.3)

where the ta are fundamental generators of SU(Nc) normalised as Tr(tatb) = 1
2 δab. For integrals

with higher dimensional representation links in the form , it is sufficient to use∫
SU(N)

dU (UR)a
b(UR†)c

d =
1
dR

δa
d
δc

b . (4.4)

Further considering the adjoint, we are in general interested in integrals with links of the form ... ,
for n lines, that is

IA
n ≡

∫
dU Ua1

b1 · · ·Uan
bn

= 2n (ta1)β1
γ1(tb1)δ1

α1 · · ·(tan)βn
γn(tbn)δn

αn

∫
dU Uα1

β1 · · ·Uαn
βnU†

γ1
δ1 · · ·U†

γn
δn

(4.5)

For example, for n = 3, evaluating the fundamental integral and simplifying using the identity
tatb = 1

2N δab1N + 1
2 dabctc + i

2 fabctc, results in

IA
3 =

Nc

(N2
c −1)(N2

c −4)
da1a2a3db1b2b3 +

1
Nc(N2

c −1)
fa1a2a3 f b1b2b3 . (4.6)

where i fabc = 2Tr([ta, tb]tc), dabc = 2Tr({ta, tb}tc).
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Figure 1: 1
N f dR
〈ψ̄ψ〉 vs. N f at g = ∞ including area 1 sub-diagrams up to order

(
1

m2

)L
for L = 4,6,8 with

fermions in the fundamental representation (left), and comparing the fundamental, symmetric, and adjoint,
including sub-diagrams up to L = 4 (right).

5. Results

Results for the normalised chiral condensate 1
N f dR
〈ψ̄ψ〉 are plotted in Figure 1. The solution

plotted is that which goes to the result of [2, 12] in the N f → 0 limit. A more detailed analysis
of results is presented in [7]. A remarkable feature of these results is that as N f is increased, the
chiral condensate decreases very slowly and approaches zero as N f → ∞. Unlike in [3, 6], there is
no indication of discontinuity in any of the solutions obtained. However, we cannot rule out that
the preferred solution changes at some critical N f . There are sources of error associated with this
approach including mis-counting of overlapping diagrams, and over-counting due to symmetries.
These need to be quantified. For details see [7].
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