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1. Introduction

Supersymmetry (SUSY) has proved to be a powerful concept which has been explored by

physicists in different contexts for decades. It can be seen as an extension of the Poincaré symmetry

of space-time, realised by the introduction of supercharges, i.e. the generators of supersymmetry

transformations. Supercharges are operators which transform bosons into fermions, and vice versa.

In high energy physics SUSY is well known as a promising extension of the Standard Model,

with strong support at both mathematical and physical level. SUSY can be realised in many dif-

ferent ways. The Large Hadron Collider (LHC) can probe extensively the low-energy realisation

of some of them. The first run of the LHC has restricted significantly the parameter space of var-

ious SUSY models. Moreover, the non-observation of SUSY states has shifted the SUSY partner

masses into the TeV region. As a consequence, even what was the first motivation of its introduc-

tion, i.e. the possibility of solving the hierarchy problem, has been questioned. Still, the last word

about the realisation of this symmetry in nature, at least in this context, has not been said [1].

Moreover, SUSY is the key ingredient in many other areas of research. When local super-

symmetry is imposed, a new field theory is obtained where supersymmetry and general relativity

live together in what we call supergravity. SUSY has been incorporated in string theory, extending

the previous bosonic string theory, including fermionic degrees of freedom and originating the so

called superstring theory. In physical cosmology it is used to explain the presence of a small but

nonzero cosmological constant. It has been added in quantum mechanics before as an attempt to

study the consequences of SUSY in a simpler setting, but later as an interesting topic by itself [2].

There are applications in condensed matter physics in studying disordered and mesoscopic sys-

tems [3]. It is also used in optical physics to tackle various theoretical problems [4, 5]. It is clear

then that the study of the properties of supersymmetric theories, in particular the non-perturbative

ones, continues to be of extreme interest.

The simplest non-abelian supersymmetric gauge theory, which is studied in this work, is the

N = 1 supersymmetric Yang-Mills (SYM) theory with gauge group SU(2). It describes the in-

teraction between gluons and gluinos. The Lagrangian looks like the one of QCD with only one

flavour, except that in this theory the fermion field transforms in the adjoint representation and it is

a Majorana field. Usually a mass term is considered, which breaks SUSY softly. When the mass

term is zero supersymmetry is predicted to be unbroken, even in the quantised theory [6].

Like in QCD, the theory in SYM is asymptotically free at high energies and becomes stronly

coupled in the infrared limit. Due to confinement, the spectrum of particles is expected to consist

of colourless bound states. If supersymmetry is unbroken the particles should belong to mass

degenerate SUSY multiplets.

Many predictions concerning the properties of SYM theories are based on perturbation theory

or semiclassical methods. However, some important properties are of a non-perturbative nature.

The first predictions on the spectrum of the theory were possible exploiting the fact that the sym-

metries of the theory constrain the form of the low-energy effective actions [7, 8]. Verifying the

formation of the predicted supermultiplets is a central task of our investigations.

Some important results have already been obtained by our collaboration in previous studies in

the framework of a lattice-regularised version of SYM, see Refs. [9, 10, 11]. We have found that

a rather small lattice spacing is necessary to investigate the restoration of SUSY. In this work we
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have added the results of a further, even smaller, lattice spacing. Due to the small lattice needed

to reduce the supersymmetry breaking, a closer look at the topological properties is required. In

particular, some results regarding the topological susceptibility are presented.

2. Chiral symmetry, SUSY, and continuum limit

As discussed in Ref. [12, 13], SUSY gauge theories can be studied on the lattice. The main

idea is that, rather than trying to have some version of SUSY on the lattice, which can be realized

only in a non-local way, one should only require that it is recovered in the continuum limit. The

conclusion of the two papers is that, in the continuum limit, the chiral limit defines the SUSY point

and vice versa.

A fine tuning of the gluino mass mg is sufficient to approach supersymmetry in the continuum

theory. This tuning is efficiently done by means of the mass of an unphysical particle: the adjoint

pion a-π . Practically, the adjoint pion is defined by the connected contribution of the correlator of

the a–η ′ particle. It has been suggested [7] that, in the OZI approximation, the adjoint pion mass

should vanish for a massless gluino. This has been then proved in a more formal way, using a

partially quenched setup [14], arriving at the important conclusion that m2
a–π ∝ mg.

The strategy we follow to reach these limits consists of two steps: in the first, we fix the lattice

spacing, i.e. we run our simulations at fixed β (the inverse of the coupling constant) and using

several (3 or 4) values of the mass parameter κ , we extrapolate our results to the chiral limit. In the

second step, we extrapolate to the continuum limit, repeating the first step for 3 or 4 values of β .

3. Fixing the scale: r0 and w0

The results the collaboration presented in Ref. [11] were characterised by the constant β =

1.60. A rather large gap, between fermionic and bosonic masses inside the same supermultiplet,

was obsterved. In the following we decreased the value of the lattice spacing by ∼ 40%, increasing

the value of β to 1.75. We presented the results in Refs. [9, 15] and for the first time we had some

indications of a restoration of SUSY in the theory we are studying. The results we present in this

paper have been obtained on a 323×64 lattice and they are characterised by β = 1.90, which means

a further reduction of the value of the lattice spacing by ∼ 30%. Comparing the scale of this theory

with that of QCD, we determined the value of the lattice spacing to be a = 0.03610(65) fm. We are

now very close to the continuum limit and the fundamental picture starts to emerge. Because results

with different lattice spacings have been obtained it is now crucial to determine very accurately a

scale so that all our results can be compared and extrapolations to the continuum limit can be carried

out. So far the scale has been determined using the Sommer parameter r0 [16]. It is determined

from the static quark potential, improving the signal using APE smearing. The method requires

two consecutive fitting procedures. Overall the method can be characterised by a few systematic

errors which sometimes are not easily taken into account.

To see how good our determinations are, we compared the values of r0 with the expected

scaling. The β -function for SYM has been determined analytically [17]:

β (g) =−
g3

16π2

3Nc

1− g2Nc

8π2

, (3.1)
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Figure 1: Comparison of the Sommer parameter data, normalised to β = 1.90, with the expected value

determined from the analytical β -function.

where Nc is the number of colours and g the coupling constant. The first two terms in the coupling

constant expansion of the β -function are universal, namely scheme independent.

In Fig. 1 we plot the ratio a(β0)/a(β ), with β0 = 1.90, determined using a second order

expansion in g to calculate the integral of the β -function, together with our numerical determination

of the ratio of the Sommer parameters: r(β )/r(β0) ≡ a(β0)/a(β ). The result is pretty good: the

first three points, taking in account the errors, are in reasonable agreement with the theoretical

expectation. The fourth point, which is our preliminary result for β = 2.10, has still some strong

systematic error which will be discussed later in Sec. 5.

An important improvement in the analysis of our data has been the determination of the pa-

rameter w0 [18], determined by Wilson flow [19], to fix the scale. This parameter does not suffer

from the systematic uncertainties which are present in the Sommer parameter, providing a more re-

liable comparison of our results. A plot similar to Fig. 1 has been obtained confirming the previous

comments. More details will be presented in an upcoming paper.

4. Light particle spectrum

The low-lying spectrum of particles has been predicted by means of effective Lagrangians. It

consists of colour neutral bound states of gluons and gluinos, forming supermultiplets: glueballs

gg, gluinoballs (mesons) g̃g̃ and gluino-glueballs g̃g.

In Ref. [7] interpolating operators for pure gluonic states have not been included, and only one

supermultiplet was described. It consists of a scalar (0+ gluinoball: a– f0 ∼ λ̄λ ), a pseudoscalar (0−

gluinoball: a–η ′ ∼ λ̄ γ5λ ), and a Majorana fermion (spin 1/2 gluino-glueball: χ ∼ σ µνTr
[

Fµνλ
]

).

The effective Lagrangian of Ref. [7] was generalised in Ref. [8]. In addition to the first chiral

supermultiplet a new one appears: a 0− glueball, a 0+ glueball, and again a gluino-glueball.

As stressed by the authors, neither of these supermultiplets contain pure gluino-gluino, gluino-

gluon or gluon-gluon bound states. As a matter of fact, the physical excitations are mixed states of

them: actually in the limit when there is no mixing the two supermultiplets are degenerate. This

fact can have important consequences for the interpretation of the numerical results: e.g. analysing

a pure gluonic operator does not imply that we are determining the spectrum of a gluon-gluon

bound state. In Fig. 2 four bound states are plotted, and their chiral limit, linearly extrapolated, is
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shown. The mass of the gluino-glue and the a–η ′ are the ones extrapolated with a better precision

(relative error ∼ 10% and ∼ 15% respectively), than there is the a– f0 and the scalar glueball (both

with a relative error of ∼ 30%).

From this figure it is now clear that the three
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Figure 2: Spectrum of the theory at β = 1.90
for four values of the a–π mass and in the ex-

trapolated chiral limit.

bound states belonging to the first supermultiplet are

degenerate within the error bars. Actually also the

mass we determine studying the pure 0+ glueball op-

erator is compatible with the other three masses.

In contrast, from our preliminary results the mass

of the pseudoscalar glueball 0− is almost two times

the mass of the first supermultiplet. A possible expla-

nation could be that due to mixing the 0+ glueball op-

erator has a significant overlap with the scalar state of

the lower supermultiplet. As a consequence, study-

ing the corresponding correlator at large euclidean-

time distance, we find again the mass of the low-lying

supermultiplet particle with the same quantum number, i.e. the a– f0.

Note that, contrary to what was assumed in Ref. [8], this would imply that the lighter super-

multiplet is gluinoball-like and the higher is glueball-like.

5. Topological susceptibility

N = 1 SYM is characterised by the presence of topological sectors. One of the greatest

problem with this kind of theories, when local update algorithms are used as in our case, is that

the simulation may get stuck inside the same topological sector. The transition between different

topological sectors is suppressed going closer to the continuum limit. It is therefore necessary

to verify the shape and the position of the distribution of the topological charge in every set of

configurations generated.

In the case of QCD the topological susceptibility is a commonly studied observable, a quantity

which reflects the dependence of the vacuum energy on the vacuum angle. This quantity has not

yet been studied intensively in SUSY models. An exception is Ref. [20], where the topological

susceptibility is discussed in the context of the orbifold equivalence. The relevant result for us is

that the topological susceptibility is expected to go to zero proportionally to the quark mass, i.e.

proportionally to the square of the adjoint pion mass, according to the discussion in Sec. 2. This

behaviour has been verified in our analysis.

The topological charge Q, discussed in this paper, is defined as follows [21]:

Q = round(αQL) , (5.1)

where round(x) denotes the closest integer to x and QL is the lattice definition in terms of smeared

plaquettes. The scaling factor α , which has been proved to improve the quality of the charge

distributions, is determined minimising the quantity:

〈(αQL − round(αQL))
2〉 . (5.2)
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Figure 3: Topological susceptibility extrapolated to the continuum limit. Each point represents the chiral

extrapolated value obtained fitting at least 3 values of κ . The conversion in dimensionful unit has been done
using the value of the Sommer parameter used in QCD: r0 = 0.5 fm.

The susceptibility of the topological charge is then defined by:

χQ =
1

V

(

〈Q2〉− 〈Q〉2
)

. (5.3)

The lattice definition of the topological charge is affected by UV fluctuations, and as a conse-

quence it does not take integer values. This means that it is necessary to introduce a multiplicative

renormalisation and even an additive one for the topological susceptibility. The way we deal with

such renormalisations is based on smoothing methods: initially we compared APE, HYP and stout

smearing, and for the final measurements we focussed on APE smearing.

In Fig. 3 the topological susceptibility is plotted against the lattice spacing as determined for

our three values of β , and its value extrapolated linearly to the continuum limit. A non-vanishing

slope is not unexpected, because the fermion part of the action is improved only by applying a few

levels of stout smearing to the link variables, and even using the tree-level Symanzik improved

gauge action a linear dependence of observables on the lattice spacing is not prevented. It should

be noted that the extrapolated value is compatible with zero as expected.

The fact that in Fig. 1 the point at β = 2.1 is far below the expected value is related to the

freezing of topology at that value of the lattice spacing, a ∼ 0.019 fm in QCD units, namely the

scale parameter is dependent on the topological charge. We expect, however, that this difficulty can

be overcome by optimising the parameters (e.g. trajectory length) of our updating algorithm [22].

6. Conclusions and outlooks

We have presented our latest results on N = 1 supersymmetric Yang-Mills theory with gauge

group SU(2). We are now able to see the degeneracy of the first supermultiplet, in accordance with

the existence of a SUSY limit of the theory.

Some issues related to the mixing of the states, and therefore with the content of the second

supermultiplet, have to be clarified. We have started a systematic analysis of some topological

properties of the theory, shedding light on this less known aspect of SUSY models. Recently we

have also started to explore the finite temperature properties of this theory [23].
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