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1. Introduction

Schrödinger functional schemes [1] have been successfully used in several renormalization
problems in lattice field theory. In this formulation, however, the presence of temporal boundaries
together with local boundary conditions for the fields are a source of extra cutoff effects. A theory
regulated with Wilson fermions is hence affected by lattice artefacts coming from the bulk and
also by those originating at the boundaries. These can be removed following Symanzik’s improve-
ment program by adding a set of counterterms to the action in the bulk and at the boundaries. An
appealing alternative to the standard formulation of Wilson fermions in the SF is the recently pro-
posed chirally rotated Schrödinger functional (χSF), which implements the mechanism of (bulk)
automatic O(a) improvement [2]. In the continuum (and chiral) limit it is directly related to the
standard SF formulation via a chiral rotation of the fermion fields. The chirally rotated fields sat-
isfy modified boundary conditions which respect a version of chiral symmetry augmented with a
flavour structure. In this situation, the argument for automatic O(a) improvement can be invoked
in terms of a rotated version of parity. Physical observables are then only affected by O(a2) dis-
cretization effects (provided that the effects from the boundaries have been removed) without the
need of introducing new operators in the bulk.

Here we report on a perturbative 1-loop calculation of the coefficients necessary for the renor-
malization and the improvement of the theory in the χSF set-up. After this is done, we perform a
set of tests (also within perturbation theory) confirming the universality between the standard and
chirally rotated set-ups, as well as the mechanism of automatic O(a) improvement.

2. The χSF set-up

For a flavour doublet chirally rotated boundary conditions take the form [2]

Q̃+ψ(x)
∣∣∣
x0=0

= Q̃−ψ(x)
∣∣∣
x0=T

= 0, ψ(x)Q̃+

∣∣∣
x0=0

= ψ(x)Q̃−

∣∣∣
x0=T

, (2.1)

with the projectors Q̃± = 1
2(1± iγ0γ5τ3) and where τ i are the Pauli matrices.

The projectors commute with iγ0γ5τ3. A rotated version of parity P5 can hence be used to
distinguish between even and odd observables in the χSF1. On the lattice P5-even correlations are
automatically O(a) improved and all O(a) effects fall into P5-odd observables.

The boundary conditions Eq.(2.1) can be derived from the standard SF boundary conditions
by applying a non-anomalous chiral rotation to the flavour doublet

ψ → R(α)ψ, ψ → ψR(α), R(α) = exp(iαγ5τ3/2). (2.2)

The rotated fields satisfy Eq.(2.1) for α = π/2 (standard SF boundary conditions are recovered for
α = 0). Since the rotation R(α) is a symmetry of the massless continuum action, the two set-ups
are equivalent, with correlation functions related through

〈O[ψ,ψ]〉χSF = 〈O[R(−π/2)ψ,ψR(−π/2)]〉SF. (2.3)

1P5 : ψ(x)→ iγ0γ −5τ3ψ(x̃), P5 : ψ(x)→−ψ(x̃)iγ0γ5τ3, x̃ = (x0,−x).
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When the theory is implemented on the lattice with Wilson quarks, these relations are expected
to hold between renormalized correlation functions once the continuum limit is taken. Implement-
ing χSF boundary conditions on the lattice is non-trivial. Here we consider the lattice set-up form
[2] in which the fermionic action reads

S f = a4
T

∑
x0=0

∑
x

ψ(x)(DW +δDW +m0)ψ(x). (2.4)

The Wilson-Dirac operator, which includes the clover term2, reads

aDWψ(x) =


−U0(x)P−ψ(x+a0̂)+(K + iγ5τ3P−)ψ(x), x0 = 0,
−U0(x)P−ψ(x+a0̂)+Kψ(x)−U0(x−a0̂)†P+ψ(x−a0̂), 0 < x0 < T,
(K + iγ5τ3P+)ψ(x)−U0(x−a0̂)†P+ψ(x−a0̂), x0 = T,

(2.5)

with the diagonal part K given by

Kψ(x) =

(
1+

1
2

3

∑
k=1

{
a(∇k +∇∗

k)γk −a2∇∗
k∇k
})

ψ(x)+ cSW

i
4

a
3

∑
µ ,ν=0

σµν F̂µν(x)ψ(x). (2.6)

The boundary counterterms read

δDW ψ(x) = (δx0,0 +δx0,T ) [(z f −1)+(ds −1)aDs]ψ(x), (2.7)

with the operator

aDs =
a
2 ∑

k
(∇k +∇∗

k)γk −
a2

2 ∑
k

∇∗
k∇k. (2.8)

Here z f is the coefficient of a dimension 3 boundary counterterm necessary to restore the P5 sym-
metry which is broken by the lattice regulator. The coefficient ds multiplies a dim 4 counterterm
at the boundaries and can be tuned to remove O(a) effects from the boundaries. While ds can be
understood as the χSF counterpart of the c̃t coefficient in the SF, z f is special from this set-up [2].
In perturbation theory these coefficients read

z f = z(0)f +g2
0z(1)f +O(g4

0), ds = d(0)
s +g2

0d(1)
s +O(g4

0), (2.9)

where z(0)f = 1 and d(0)
s = 1/2. One of the central goals of this work is to determine z(1)f and d(1)

s .
Although knowing ds to 1-loop is enough in practise, in a non-perturbative calculation z f must be
known also non-perturbatively in order to ensure that the correct symmetries are recovered in the
continuum limit [3]. The knowledge of z(1)f can help to guide the non-perturbtive tuning and it is
moreover required in further perturbative calculations.

3. Correlation functions in the SF and the χSF

Correlation functions in the χSF set-up are defined in a similar way as in the standard SF.
Writing explicitly the flavour assignments, boundary to bulk correlation functions are given by

g f1 f2
X (x0) =−1

2
〈X f1 f2(x0)Q

f2 f1
5 〉, and l f1 f2

Y (x0) =−1
6

3

∑
k=1

〈Y f1 f2
k (x0)Q

f2 f1
k 〉, (3.1)

2Although the clover term is not needed for automatic O(a) improvement, including it removes some O(a) effects
from P5-odd quantities.
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with the fermion bilinears being X = A0,V0,S,P, and Yk = Ak,Vk,Tk0, T̃k0. Boundary to boundary
correlation functions read

g f1 f2
1 =−1

2
〈Q f1 f2

5 Q′ f2 f1
5 〉, and l f1 f2

1 =−1
6

3

∑
k=1

〈Q f1 f2
k Q′ f2 f1

k 〉. (3.2)

The boundary operators Q f1 f2
5 , ..., are constructed by applying the rotation Eq.(2.2) to the standard

SF boundary operators such that Eq.(2.3) holds. For avoiding the computation of disconnected dia-
grams occurring in correlation functions with repeated flavour assignments we consider a partially
quenched set-up with 2 types of up quarks (u and u’) and 2 types of down quarks (d and d’) [4].

For the standard SF we use correlation functions following conventions from the literature.
Following Eq.(2.3) we can write a dictionary relating correlation functions in the 2 set-ups similar
to that relating standard and twisted mass QCD. Some relations with the P5-even correlations are

fA = guu′
A =−igud

V , fP = iguu′
S = gud

P , kV = luu′
V =−ilud

A , kT = iluu′

T̃
= lud

T , (3.3)

and with P5-odd correlation functions

fV = guu′
V =−igud

A , fS = iguu′
P = gud

S , kA = luu′
A =−ilud

V , kT̃ = iluu′
T = lud

T̃
. (3.4)

The tuning of z f and mc accounts for the restoration of P5 and chiral symmetries and must be
done simultaneously. A typical condition for fixing m0 = mc is to demand the PCAC mass to be
zero at the middle of the lattice. For determining z f one can require any P5-odd quantity to vanish.
In this study we consider 4 renormalization conditions for z f , i.e.

i) guu′
P = 0, ii) gud

A = 0, iii) guu′
V = 0, and iv) gud

S = 0. (3.5)

Different renormalization conditions for z f lead to differences ∆z f which vanish linearly in a/L.

4. Perturbation theory

In perturbation theory, the correlation functions of the previous subsection are expanded to
1-loop order as

gX(x0) = g(0)X (x0)+g(1)X (x0)g2
0 +O(g4

0), g1 = g(0)1 +g(1)1 g2
0 +O(g4

0), (4.1)

and similarly with all the other correlation functions. The gauge fixing procedure is the same as
in [5], and so is the gluon propagator. The calculation of g(1)X and g(1)1 requires de evaluation of
the same set of diagrams as those shown in [5, 6], together with the contribution due to the χSF
boundary counterterms Eq.(2.7). Explicit expressions for the vertices and quark propagator derived
from Eq.(2.5) will be given elsewhere [7].

We have produced a program for the fast evaluation of a large set of correlation functions of
fermion bilinears to 1-loop in perturbation theory for both the standard and chirally rotated set-ups.
We calculate correlation functions for L/a ∈ [6,48] from which it is possible to extract the different
terms of the asymptotic expansion of the 1-loop coefficients.
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4.1 Determination of m(1)
c and z(1)f

The 1-loop coefficients m(1)
c and z(1)f are obtained by expanding the renormalization conditions

in section 3 and solving them up to 1-loop order for a range of lattice spacings. After taking the
continuum extrapolation a/L → 0 we obtain{

m(1)
c (cSW = 1) =−0.2025565(1)×C2(R),

m(1)
c (cSW = 0) =−0.325721(7)×C2(R),

{
z(1)f (cSW = 1) = 0.167572(2)×C2(R),

z(1)f (cSW = 0) = 0.33023(6)×C2(R).
(4.2)

where C2(R) is the quadratic casimir operator in the representation3 R.
The coefficient m(1)

c reproduces the known values of the critical mass for cSW = 1 and 0, as
expected. The coefficient z(1)f has been calculated here for the first time. It is worth noting that
the determination of mc is quite independent from z f , which has also been observed in quenched
calculations [4, 8] and in dynamical studies [3].

Next we calculate the differences ∆z(X)
f = z(1)f

∣∣∣
X
− z(1)f

∣∣∣
iv

in determining z f using the different

renormalization conditions in Eq.(3.5). In figure 1 it can be seen that ∆z(X)
f vanish linearly as

a/L → 0 for cSW = 0, while for cSW = 1 the convergence is much faster.
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0.0

∆z
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2(R

)

∆z
f

(i)

∆z
f 

(ii)

∆z
f

(iii)
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=1

x10
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x10
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Figure 1: Differences in the 1-loop value z(1)f at finite lattice spacing for the different tuning conditions.

4.2 Determination of d(1)
s

The determination of the 1-loop boundary improvement coefficient d(1)
s can be done by requir-

ing the absence of O(a) terms at 1-loop in some P5-even quantity. We consider an even quantity
evaluated to 1-loop order and at several values of the fermion boundary angle θ , i.e.[

gud
P (x0,θ ,a/L)

]
R[

gud
P (x0,0,a/L)

]
R

∣∣∣∣∣
x0=T/2

, d(1)
s =−0.0009(3)×C2(R). (4.3)

For θ = 0.1, 0.5 and 1.0 we consistently find the value of d(1)
s given in Eq.(4.3).

4.3 Test of automatic O(a) improvement

Once the determination of the improvement and renormalization coefficients has been done
we would like to test whether the mechanism of automatic O(a) improvement works.

3C2(F) = (N2 −1)/2N for the fundamental representation.
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First of all we check that the boundary conditions Eq.(2.1) are correctly realised. After z f is
tuned to its critical value eq.(2.1) should hold up to cutoff effects. To test this we evaluate a set of
even correlation functions for which the projectors at the boundary operators have been reverted4

Q± → Q∓. Such correlations should vanish provided that boundary conditions are correctly imple-
mented. In figure 2 it can be seen that correlation functions with reverted projectors are very small
and vanish as the continuum limit is approached.

0 0.05 0.1 0.15
a/L

-ig
V-

ud

  g
A-

uu’

  g
P-

ud

-ig
S-

uu’

-il
A-

ud

  l
T-

uu’

-il
T-

ud

  l
V-

uu’0 0.05 0.1 0.15
a/L

-5.0

0.0

5.0

~

c
SW

=0 c
SW

=1

x10
-3

Figure 2: Vanishing correlation functions with reversed projectors in the boundary operators.

Secondly, we study the continuum limit of P5-odd correlation functions and verify that these,
being pure cutoff effects, vanish with the expected rate in a/L (see figure 3).

4.4 Universality

Once the coefficients z f and mc are known, the equalities in Eqs.(3.3) and (3.4) are expected
to hold between ratios of renormalized correlation functions. For instance, the ratios

RA =

guu′
A (T/2)√

guu′
1

×[ fA(T/2)√
f1

]−1

, and RP =

gud
P (T/2)√

gud
1

×[ fP(T/2)√
f1

]−1

, (4.4)

should approach 1 as a/L → 0. In perturbation theory, the ratios are expanded as

RX = R(0)
X +g2

0R(1)
X +O(g4

0). (4.5)

Universality implies that R(0)
X → 1 and R(1)

X → 0 as a/L → 0. As can be seen from figure 4, we
confirm the expected convergence of the universality relations as the continuum limit is approached.

5. Conclusions

Here we have calculated for the first time to 1-loop order in perturbation theory the renormal-
ization and O(a) improvement coefficients z(1)f and d(1)

s for the χSF set-up. With the knowledge
of these coefficients we have confirmed, always in the framework of perturbation theory, that auto-
matic O(a) improvement is at work. Also, the universality between standard and chirally rotated
frameworks is confirmed. The χSF opens new possibilities for determining finite renormalization
constants and O(a) improvement coefficients for theories with Wilson type fermions [3]. Further
perturbative calculations are essential to determine them in a way in which cutoff effects are mini-
mal.

4These correlations are labelled with a “−“sign, i.e. g f1 f2
X ,−.
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Figure 3: Vanishing P5-odd correlation functions at 1-loop calculated for cSW = 0 and 1, with z f fixed using
the renormalization condition gud

A = 0.
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0.9
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θ=0.5 θ=0.0

Figure 4: Ratios RA and RP at tree level (left panel) and 1-loop (right panel). For the tree level ratios, the
fermion boundary angle is chosen to be θ 6= 0. Otherwise, for the choice θ = 0 cutoff effects are absent from
tree-level correlation functions and the ratio is exactly 1.
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