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1. Introduction

Wilson fermions [1] are a popular way of discretizing fermions in lattice QCD. Their main
drawback is that they break chiral symmetry. As a consequence, they are afflicted with dis-
cretization errors linear in the lattice spacing a. These O(a) errors can be removed by adding
the Sheikholeslami-Wohlert term (clover term) to the Wilson action [2] and further improvement
terms to the matrix elements of interest. This method of O(a) improvement has become known
as ‘Symanzik improvement program’ [3, 4]. Moreover, currents which are conserved in a chiral
theory and hence need not be renormalized require a finite renormalization with Wilson fermions.
One of these currents is the isovector axial current which we are concerned with in this work.

The isovector axial current is a quark bilinear and in its bare form it can be written as

Aa
µ(x) = ψ(x)γµγ5

τa

2
ψ(x), (1.1)

where τa is a matrix acting in flavor space. Symanzik’s effective theory predicts that the axial
current will mix with the derivative of the pseudoscalar density Pa(x) at O(a), when the lattice
discretization breaks chiral symmetry. This can be compensated for by adding a corresponding im-
provement term to the bare current. Its coefficient is denoted by cA and is at the heart of improving
the axial current.

Furthermore, the axial current is renormalized by multiplying it by the renormalization fac-
tor ZA and another mass-dependent term. Thus, the fully renormalized and improved axial current
on the lattice is

(AR)
a
µ(x) = ZA

(
1+bA amq

)[
Aa

µ(x)+acA ∂µPa(x)
]

with Pa(x) = ψ(x)γ5
τa

2
ψ(x). (1.2)

The axial current plays a fundamental rôle in many applications, notably the computation
of quark masses and meson decay constants in the pseudoscalar sector. These are not only of
phenomenological interest, but they provide a precise way of setting a physical scale in lattice
simulations, too. One observable that can be used for this purpose is the kaon decay constant fK [5].
In these contexts, it is crucial to employ the improved and renormalized current, since, typically,
improvement and renormalization each contribute about 10-20% to the final result [6, 7, 8]. Both
can be computed in perturbation theory. However, in previous works it was found that the non-
perturbative results deviate strongly from the 1-loop estimates. The deviations can be several times
the 1-loop contribution itself. Therefore, it is desirable to determine cA and ZA in a non-perturbative
way.

The methods we use to determine cA and ZA have been introduced in previous papers, which
applied them to the quenched [9, 10] and two-flavor QCD cases [6, 8]. Here, we look at an action
with O(a) improved Nf = 3 mass-degenerate dynamical Wilson fermions [11] and the tree-level
Symanzik-improved gauge action (TLI gauge action) [12]. The main part of this text is about the
renormalization of the axial current. The renormalization condition is summarized in section 2, the
ensembles of gauge field configurations that we used are described in section 3, and our preliminary
results, in particular for the interpolating function for ZA (valid for lattice spacings . 0.09fm), can
be found in section 4. The determination of the improvement coefficient cA was recently finished
and will be published soon [13]. We will only reproduce the main result in section 4. A preliminary
report can also be found in [14].
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2. Renormalization Condition

Renormalization conditions for the axial current are based on the idea that they can restore
chiral Ward identities, which are broken by the Wilson term, up to O(a2). This is done by choosing
one particular Ward identity and adjusting ZA so that it holds exactly. The condition that we choose
has been introduced for simulations with two dynamical fermions [8], but a similar condition has
already been used in the quenched case [10]. We give a shortened description of its derivation
below. More details can be found in the original papers.

The Ward identity our renormalization condition is based on is similar to the PCAC relation,
i.e., it is derived from a chiral rotation of the quark fields, but, in addition, the axial current Ab

ν(y)
is inserted as an internal operator. The resultant identity is∫

∂R
dσµ(x)

〈
Aa

µ(x)A
b
ν(y)Oext

〉
−2m

∫
R

d4x
〈

Pa(x)Ab
ν(y)Oext

〉
= iεabc 〈V c

ν (y)Oext〉 , (2.1)

where R is an arbitrary region containing y, Oext is an operator built from fields outside R, and V c
ν

is the isovector vector current. As region R we choose the spacetime volume between two space-
like hyperplanes. Furthermore, eq. (2.1) can be modified by using the PCAC relation to shift the
integration domains. Setting ν = 0 and contracting the flavor indices a and b with εabc, one arrives
at ∫

d3x d3y ε
abc
〈

Aa
0(x)Ab

0(y)Oext

〉
−2m

∫
d3x d3y

∫ x0

y0

dx0 ε
abc
〈

Pa(x)Ab
0(y)Oext

〉
= i
∫

d3y 〈V c
0 (y)Oext〉 (2.2)

with x0 > y0 defining the hyperplanes.
We evaluate this identity on a lattice with Schrödinger functional boundary conditions (peri-

odic in space, Dirichlet in time) [15, 16] with vanishing background field. The source operator Oext

is built from the quark fields ζ and ζ ′ at the boundaries x0 = 0 and x0 = T :

Oext =−
1

6L6 ε
cdeO ′dOe (2.3)

with

Oe = a6
∑
u,v

ζ (u)γ5
τe

2
ω(u−v)ζ (v) and O ′d = a6

∑
u,v

ζ
′(u)γ5

τe

2
ω(u−v)ζ

′(v), (2.4)

where the wavefunction ω is understood to be an approximation of the pseudoscalar ground state.
Its construction is detailed in [13, 14]. We summarize the results in section 4. The free index c
that appears in eq. (2.3) is contracted with the free index from eq. (2.2). In this case, the term
on the right-hand side involving the vector current can be simplified to the boundary-to-boundary
correlator

F1 =−
1

3L6 〈O
′aOa〉 (2.5)
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up to O(a2), as was shown in [10, 8] by using isospin symmetry.
In the remaining two terms on the left-hand side, the continuum currents are replaced by their

improved and renormalized counterparts from the lattice. The result can be put in this form,

Z2
A
(
1+bA amq

)2 [F I
AA(x0,y0)−2m ·F I

PA(x0,y0)
]
= F1, (2.6)

with the improved correlation functions

F I
AA(x0,y0) = FAA(x0,y0)+acA

[
∂̃x0FPA(x0,y0)+ ∂̃y0FAP(x0,y0)

]
+a2c2

A ∂̃x0 ∂̃y0FPP(x0,y0), (2.7)

and

F̃ I
PA(x0,y0) = a

x0

∑
x′0=y0

w(x′0) [FPA(x0,y0)+acA ∂y0FPP(x0,y0)] , (2.8)

where ∂̃ denotes the central difference operator and FXY (x0,y0) with X ,Y ∈ {A0,P} stands for

FXY (x0,y0) =−
a6

6L6 ∑
x,y

ε
abc

ε
cde
〈
O ′dXa(x)Y b(y)Oe

〉
(2.9)

and

w(x′0) =

{
1/2 if x′0 = y0 or x′0 = x0

1 if y0 < x′0 < x0
(2.10)

implements the trapezoidal rule. Note that in eq. (2.6) the renormalization factors, which would
arise from the boundary fields ζ and ζ ′, cancel on both sides and that the product mPa can be renor-
malized with the same factor ZA as the axial current due to the PCAC relation. The mass-dependent
term proportional to bA will be dropped from here on, since we will impose the renormalization
condition at vanishing mass. Of course, we can not tune the parameter to get exactly zero mass,
but this only amounts to an O(am) effect. Thus, our final renormalization condition is

ZA = lim
m→0

[
F1

F I
AA(x0,y0)−2m ·F I

PA(x0,y0)

] 1
2

. (2.11)

In order to maximize the distance between the insertion points, we choose x0 =
2
3 T and y0 =

1
3 T .

Except for F1, eq. (2.11) is built from correlators of the form given in eq. (2.9). When one
evaluates these by performing the Wick contractions, one finds that only six contractions contribute,
which are illustrated in figure 1. Two of them are disconnected. As argued in [8], they only give
rise to O(a2) contributions and cancel in the continuum limit. By omitting them and taking only
the connected contractions, one obtains an alternative renormalization condition. We will denote
the corresponding renormalization factor by Zcon

A .
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t

T

0y

0

0x

ζ̄' ζζ̄ζ' A  /P0

Figure 1: The six non-vanishing Wick contractions of correlation functions FXY with source Oext and two
bulk insertions X and Y , see eq. (2.9), taken from [8].

L3×T/a4 β κ # REP # MDU ID

123×17 3.3 0.13652 10 10240 A1k1
0.13660 10 13048 A1k2

163×23 3.512 0.13700 2 20480 B1k1
0.13703 1 8192 B1k2
0.13710 3 24560 B1k3

203×29 3.676 0.13700 4 15232 C1k2
0.13719 4 15472 C1k3

243×35 3.810 0.13712 7 15448 D1k1

Table 1: Overview of simulation parameters, number of replica and total number of molecular dynamics
units of gauge configuration ensembles labeled by ‘ID’.

3. Simulations

To determine the renormalization factor ZA of the axial current, we re-use the ensembles that
were generated to obtain the improvement coefficient cA.1 These had already been designed to fit
this purpose, in particular the ratio of the spatial and temporal extents was approximately T/L ≈
3/2 with L ≈ 1.2fm. From [18], we expect this to be a good trade-off between a large infrared
cutoff and small O(a2) effects. An overview of the simulation parameters is given in table 1.

The coupling β was chosen such that the physical lattice size L stays roughly constant (line of
constant physics). In this way, O(a2) ambiguities in ZA are guaranteed to smoothly vanish in the
continuum limit. This was done using the perturbative relation between the lattice spacing a and
the bare coupling. However, only the first two, universal coefficients b0 and b1 of the beta-function
could be taken into account, because higher-order terms are not known for the TLI gauge action. To
test for deviations from the line of constant physics, the gradient (or Wilson) flow coupling ḡGF was
computed [19]. It is a renormalized coupling that depends on L as a scale, i.e., it will be constant if
L is constant.

The parameter κ was tuned towards a vanishing PCAC mass. In [11], an upper bound of

1The ensembles were generated using the openQCD code [17], see also http://luscher.web.cern.ch/

luscher/openQCD/.
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|amPCAC| < 0.015 was employed. We expect that ZA is more sensitive to the mass. Since at most
values of β we have several ensembles with different κ values, we can check its influence explicitly
by comparing the results.

In order to monitor the autocorrelation of the generated gauge configurations, several observ-
ables were computed alongside which are defined in terms of the gauge field smoothed by means of
the gradient flow [20, 21]. Mostly, they showed autocorrelation times that did not exceed 250MDU,
only the topological charge became frozen at the largest β = 3.810. For cA and ZA, this should
amount to a cutoff effect, but we have estimated it explicitly for cA and have indeed found no
significant deviations [13]. Further details, in particular about the algorithmic details can be also
found in that reference.

4. Results

We have measured the correlators that are necessary to compute the renormalization factor
and the PCAC mass on every second trajectory (in A1k2, A2k1) or every fourth trajectory (in the
remaining ensembles). Via eq. (2.11), we compute ZA as well as the alternative Zcon

A , where only
the connected Wick contractions are included.

As already anticipated in eq. (2.4), our Schrödinger functional correlators involve boundary
operators with a particular choice of wavefunction, which is constructed in such a way that it
suppresses the contribution of the first excited state in the pseudoscalar channel. This optimal
wavefunction was determined in the context of our non-perturbative calculation of the improvement
coefficient cA in [13] (see also [14] for a preliminary report), which employs the same gauge field
ensembles at constant physics and the same kinematical setup as used here. It relies on demanding
the quark mass extracted from the PCAC Ward identity to stay unchanged when the external states
are varied, where in practice these external states are modeled as superpositions of spatial trial
(hydrogen-like) wavefunctions designed to approximately maximize the overlap with the ground
and first excited state, respectively. For the purpose of ZA, however, only the wavefunction for the
approximate pseudoscalar ground state is required, which we therefore choose as the one already
obtained in [13], i.e.,

ω
π(0) =

3

∑
i=1

η
(0)
i ωi, η

(0) = (0.5317,0.5977,0.6000), (4.1)

in terms of the basis of suitable trial wavefunctions ωi mentioned above. With this wave function
at hand, the eq. (2.11) for ZA is evaluated upon prior projection of all entering correlation functions
to this approximate ground state.

Moreover, as it is evident from eqs. (2.7) and (2.8), a genuine non-perturbative determination
of ZA also requires the knowledge of non-perturbative values for cA for our simulation parameters.
We thus rely on the result of our aforementioned recent non-perturbative computation of cA in
three-flavor lattice QCD with tree-level improved gauge action [13], which we reproduce here for
convenience:

cA(g2
0) =−0.006033g2

0×
[
1+ exp

(
9.2056−13.9847 ·g−2

0

)]
; (4.2)
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Figure 2: Final results for cA together with interpolation [13]. The dotted line indicates the perturbative
1-loop asymptotics [22].

this formula is valid for bare couplings below g2
0 ≈ 1.8 and with statistical errors between ≈ 4%

near the largest and ≈ 8% near the smallest bare couplings simulated. For further details about this
determination of cA we refer to refs. [13, 14].

Our preliminary results for ZA obtained for the ensembles considered so far are collected in
table 2. In our tentative error analysis, we estimate the errors on ZA for each replicum via a full
autocorrelation analysis as described in [23] and compute a weighted average over all replica within
an ensemble.

Table 2 also includes the unrenormalized PCAC mass amPCAC, which is computed using the
perturbative value of cA and the wavefunction ω

π(0) , the gradient-flow coupling g2
GF and the results

for Zcon
A obtained via the alternative definition of the renormalization factor, which includes only

connected contractions.

As can be seen from the table, g2
GF is approximately constant, only the deviation on the ensem-

ble D1k1 at the largest β is more pronounced. We do not expect that this deviation from constant
physics has a significant effect on our result, but we plan to check it explicitly using the ensemble
B2k1 from [13], whose parameters are identical to the ones of B1k1 except for β . Some of the
ensembles in the B and C groups show a significant though not yet severe mass dependence. We
consider taking a closer look at this issue and adding new ensembles with different κ values, too.

For L/a = 12 (β = 3.3), Zcon
A differs significantly from the standard value ZA, which seems

to signal significant O(a2) uncertainties in ZA at this lattice spacing (a≈ 0.09fm). Similarly large
cutoff effects at this β were also observed for this action in [24]. However, at smaller lattice
spacings the results for both definitions of ZA are in good agreement within their errors. We plan
to examine the impact of cutoff effects on ZA more closely by adding an ensemble at L/a = 14
(β = 3.414).
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ID amPCAC g2
GF Zcon

A ZA

A1k1 −0.0010(7) 18.12(21) 0.8162(78) 0.6553(90) ∗
A1k2 −0.0086(6) 16.95(13) 0.8290(92) 0.6489(72)

B1k1 +0.0063(2) 16.49(13) 0.7757(23) 0.7666(47)
B1k2 +0.0056(3) 16.85(20) 0.7758(45) 0.7677(71)
B1k3 +0.0022(2) 16.11(14) 0.7804(30) 0.7516(36) ∗

C1k2 +0.0066(2) 15.53(14) 0.7889(16) 0.7888(48)
C1k3 −0.0005(1) 14.64(13) 0.7822(27) 0.7785(33) ∗

D1k1 −0.00269(8) 13.90(11) 0.7969(16) 0.7904(16) ∗

Table 2: Summary of results: the unrenormalized PCAC quark mass, the gradient-flow coupling, the results
for ZA using the alternative definition (Zcon

A ) and the standard definition including disconnected contractions.
Ensembles marked by ‘∗’ are used in the fit procedure.

0.64
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0.70

0.72

0.74
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0.80
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0.84

1.3 1.4 1.5 1.6 1.7 1.8 1.9

Z A

g2
0

Padé fit
ZA

Figure 3: Plot of our preliminary estimate of ZA versus the bare coupling g2
0. The data points and a Padé fit

are shown.

In figure 3, the ZA values of the four ensembles with the smallest absolute PCAC mass at
each value of β are plotted against the bare coupling. They have been used to determine a Padé
approximation of ZA(g2

0) based on the ansatz

ZA(g2
0) =

1+a1 ·g2
0 +a2 ·g4

0

1+b1 ·g2
0

, (4.3)

which is constrained to yield the correct continuum limit ZA(0) = 1. The coefficients we found are

a1 =−0.6492, a2 = 0.0619, b1 =−0.5298. (4.4)
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With these parameters, the fit function lies well within the errors of all data points.
Let us emphasize again that the results on ZA should be regarded as preliminary, since a final

error analysis as well as the inclusion of the reweighting factors (to compensate for the approx-
imation errors of the RHMC algorithm employed for the third quark in our simulations) are still
missing. Regarding the latter, our experience from cA leads us to expect only a minor influence
from them. Moreover, to account for the topology freezing observed at the finest lattice spacing,
we will supplement our definition of ZA with the condition to restrict the analysis to the sector of
zero topological charge, as we did for cA [13].

5. Conclusions

We have determined a preliminary expression for the renormalization factor ZA(g2
0) of the

isovector axial current for the tree-level improved gauge action and three dynamical flavors of
Wilson fermions. It is summarized in the interpolation formula of eq. (4.3). Together with the
improvement coefficient cA, which has already been determined non-perturbatively [13], this will
make it possible to obtain precise results for matrix elements such as pseudoscalar decay constants.
However, before our result is applied, we will scrutinize our analysis by projection to the zero-
topology sector and also investigate deviations from the constant physics condition. In addition, a
simulation at another point (L/a = 14, β = 3.414) along our line of constant physics is under way
to shed light on the cutoff effects reflected at the coarsest lattice spacing by the differences between
ZA and Zcon

A .
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