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We summarize recent non-perturbative results obtained for the renormalization constants com-
puted in the RI’-MOM scheme for Nf = 2+ 1+ 1 twisted mass QCD. Our implementation em-
ploys the Iwasaki gauge action and four dynamical degenerate twisted mass fermions. Renormal-
ization constants for scalar, pseudo-scalar, vector and axial operators, as well as the quark propa-
gator renormalization, are computed at three different values of the lattice spacing, two different
volumes and several values of the twisted mass. Our method allows for a precise cross-check of
the running, because of the particular proper treatment of the hypercubic artifacts. Preliminary
results for twist-2 operators are also presented.
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1. Introduction
Quantum Chromodynamics (QCD) is strongly coupled in the scales relevant for Hadron Physics

and thus requires a non-perturbative treatment. At the moment the only approach which avoids ap-
proximations and modelling assumptions is QCD discretized on a spacetime lattice. However,
lattice QCD is a bare field theory where the results of matrix elements are computed at a fixed
value of the UV cutoff Λ = 1/a. One must renormalize in order to obtain continuum physics
and this can be done perturbatively or non-perturbatively. Lattice perturbation theory is infamous
for its slow convergence properties so we will employ the non-perturbative (NP) method that fits
naturally to the whole non-perturbative setup of the computation. Of course the lattice computa-
tion is hindered by O(a2) discretization effects if e.g. one employs a Symanzik improved action
or the Twisted mass (TM) formulation. The two main players in the game of NP renormaliza-
tion are the RI’-MOM scheme [1] and the Schrödinger functional [2]. There has been a lot of
work utilizing the RI’-MOM scheme [3] and a significant amount of it has been within the frame-
work of TM QCD [4, 5, 6, 7, 8, 9]. In this study we employ the RI’-MOM scheme to com-
pute the renormalization constants (RCs) of fermionic bilinears for Nf = 4 using TM fermions.
We perform the renormalization of the densities, the currents as well as of the twist-2 opera-

tor O44(x) ∝ ū(x)[γ4
↔
D 4 −

1
3 ∑

k
γk
↔
D k]u(x) which determines the average momentum fraction

〈x〉q =
∫ 1

0 dx x(q(x)+ q̄(x)) in the hadrons [10]. Our methods allow for the extraction of the 〈A2〉,
the dimension-2 gluon condensate that has rich phenomenological implications.

2. RI’-MOM and the computational setup
We use the RI’-MOM scheme [1] and we focus on local fermion bilinears

OΓ = ψ̄(x1)Γψ(x2), (2.1)

where Γ can be any Dirac structure and contains covariant derivatives for the case of twist-2 oper-
ators. We insert OΓ in the fermion 2-pt function, which determines the 3-pt function

GO = 〈u(x1)OΓd̄(x2)〉, (2.2)

then we compute the amputated Green’s function, or bare vertex, as

ΛO(p) = S−1
u (p)GO(p)S−1

d (p), (2.3)

with S(p) the quark propagator. The operators that we consider are multiplicatively renormalized.
Since the RC is a scalar, one works with the projected quantity

ΓO(p) =
1
12

Tr[POΛO(p)], (2.4)

where PO is a projector specific for each operator.
The operator RC (ZO) is fixed by the following renormalization condition

ΓO(µ,gR,mR = 0)
∣∣
R = Z−1

q (aµ,g0)ZO(aµ,g0)ΓO(p,g0,m)
∣∣

p2 = µ2

m→ 0

= 1, (2.5)
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after having computed the quark wave function RC which is given by

Zq(µ
2 = p2) =− i

12p2 Tr[S−1
bare(p)p/]. (2.6)

Unity on the RHS of the renormalization condition represents the tree level value of Γ0. Note that
since the 2-pt and 3-pt correlation functions are not gauge invariant, one needs to fix the gauge
for the determination of the RCs. We have chosen the lattice version of the Landau gauge in this
study. In order to obtain sensible results through this renormalization procedure one needs to be
within the window of applicability of the RI’-MOM scheme which is defined in the case of a lattice
regularization as follows

ΛQCD� µ � π

a
, (2.7)

where the first inequality ensures the possibility of matching with some perturbative scheme like
the MS and protects from infrared effects such as Goldstone pole contaminations while the second
inequality ensures small cutoff effects. With the available resources the statistical error in the com-
putation of RCs is rather miniscule while the systematic errors are originating mainly from cutoff
effects which are considerably larger. Thus we have tried to isolate the different cutoff effects which
contaminate our results and we treat them non-perturbatively utilizing group theoretical methods
[11, 12]. There are two dominant type of cutoff effects. Those which are invariant under O(4) and
those that are only invariant under H(4), the group of hypercubic rotations in four dimensions.

In the current computations of Nf = 2+ 1+ 1 flavors the ETMC is employing the Iwasaki
action in the gauge sector and a twisted mass action for the heavy as well as the light quarks [13].
The full action reads

S = SY M
Iwa +S f

l +S f
h , (2.8)

while the fermionic part of the action [14]

S f
l +S f

h = a4
∑
x

χ̄l

(
γ ·∇− a

2
∇ ·∇+m0l + iµlγ5τ3

)
χl

+ a4
∑
x

χ̄h

(
γ ·∇− a

2
∇ ·∇+m0h + iµhγ5τ1 +µδ τ3

)
χh. (2.9)

The polar mass is defined as M =
√

m2 +µ2 and the twist angle as ω = arctan(µ/m) where
m = ZAmPCAC. The quark doublet in the twisted basis is related to the one in the physical basis by
the transformation

ψl = e
i
2 ωlγ5τ3 χl,

ψ̄l = χ̄le
i
2 ωlγ5τ3 ,

ψh = e−iω1γ5τ1/2eiω2τ2/2
χh,

ψ̄h = χ̄he−iω2τ2/2e−iω1γ5τ1/2. (2.10)

which transforms the action to the conventional Dirac action

Sph = a4
∑

f=h,l
ψ̄ f (DtW +M f )ψ f . (2.11)

In order to achieve the benefits of the TM formulation, such as automatic O(a) improvement,
one needs to work at maximal twist ω = π/2 [13] which amounts to tuning mPCAC to zero. For the
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Nf = 4 configurations this tuning was a highly non trivial task at the time these configurations where
produced. So an alternative strategy was followed, to average results obtained at two opposite
values of mPCAC. The combination of the results with positive and negative mPCAC that goes usually
under the name of θ average is the first step of our calculations in order to get rid of the O(a) cutoff
effects. The Nf = 4 configurations were generated with the main purpose to renormalize accurately
the physical Nf = 2+1+1 configurations. The reason is that since we employ a mass independent
renormalization scheme (where RCs are defined in the chiral limit), the Nf = 4 ensembles with four
light degenerate flavors allow for a reliable chiral extrapolation. In this analysis the configurations
used comprise two different volumes, three values of the lattice spacing, as well as several values
of the twisted mass. The values of the lattice spacing are respectively a = 0.062 fm for β = 2.10,
a = 0.078 fm for β = 1.95 and a = 0.086 fm for β = 1.90 [7]. The exact parameters of the runs
are summarized in Table 1. The next step in the analysis is to take the chiral limit in the valence

Table 1: The N f = 4 ETMC ensembles utilized in this study note that aµsea is given in bold

ensemble κ amPCAC aµ confs #

β = 2.10 - 323.64
3p 0.156017 +0.00559(14) 0.0025, 0.0046, 0.0090, 0.0152, 0.0201, 0.0249, 0.0297 250
3m 0.156209 -0.00585(08) 0.0025, 0.0046, 0.0090, 0.0152, 0.0201, 0.0249, 0.0297 250
4p 0.155983 +0.00685(12) 0.0039, 0.0064, 0.0112, 0.0184, 0.0240, 0.0295 210
4m 0.156250 -0.00682(13) 0.0039, 0.0064, 0.0112, 0.0184, 0.0240, 0.0295 210
5p 0.155949 +0.00823(08) 0.0048, 0.0078, 0.0119, 0.0190, 0.0242, 0.0293 220
5m 0.156291 -0.00821(11) 0.0048, 0.0078, 0.0119, 0.0190, 0.0242, 0.0293 220

β = 1.95 - 243.48
2p 0.160826 +0.01906(24) 0.0085, 0.0150, 0.0203, 0.0252, 0.0298 290
2m 0.161229 -0.02091(16) 0.0085, 0.0150, 0.0203, 0.0252, 0.0298 290
3p 0.160826 +0.01632(21) 0.0060, 0.0085, 0.0120, 0.0150, 0.0180, 0.0203, 0.0252, 0.0298 310
3m 0.161229 -0.01602(20) 0.0060, 0.0085, 0.0120, 0.0150, 0.0180, 0.0203, 0.0252, 0.0298 310
8p 0.160524 +0.03634(14) 0.0020, 0.0085, 0.0150, 0.0203, 0.0252, 0.0298 310
8m 0.161585 -0.03627(11) 0.0020, 0.0085, 0.0150, 0.0203, 0.0252, 0.0298 310

β = 1.90 - 243.48
1p 0.162876 +0.0275(04) 0.0060, 0.0080, 0.0120, 0.0170, 0.0210, 0.0260 450
1m 0.163206 -0.0273(02) 0.0060, 0.0080, 0.0120, 0.0170, 0.0210, 0.0260 450
4p 0.162689 +0.0398(01) 0.0060, 0.0080, 0.0120, 0.0170, 0.0210, 0.0260 370
4m 0.163476 -0.0390(01) 0.0060, 0.0080, 0.0120, 0.0170, 0.0210, 0.0260 370

sector where we also take care of the Goldstone pole in the case of the pseudoscalar RC. We use
the following ansatz for the amputated pseudoscalar vertex

ΓP = aP +bPm2
π +

cP

m2
π

, (2.12)

and we "subtract" the pole contributions according to

Γ
sub
P = ΓP−

cP

m2
π

. (2.13)

3. Correcting for discretization effects

With the improvement provided by the TM formulation we still have O(a2) lattice artifacts
contaminating our results. We will correct for the H(4), hypercubic artifacts by employing the
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Figure 1: The half fishbone structure arises because
of the hypercubic artifacts. The same value of p2 cor-
responds to different hypercubic orbits (black data).
The "H(4) - extrapolation" (red data) treats these cut-
off effects non perturbatively. Results are shown for
β = 2.10, volume 323×64 and µ = 0.0046.
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Figure 2: RCs as a function of a2 p2 after the removal
of the H(4) artifacts for the ensemble with β = 2.10,
volume 323×64 and µ = 0.0046.

"H(4)"-extrapolation method of [11] which treats them non-perturbatively. From basic group the-
ory [15] one can show that any H(4) invariant polynomial can be expanded in the basis of the
following H(4) invariants

p[2] =
4

∑
µ=1

p2
µ , p[4] =

4

∑
µ=1

p4
µ , p[6] =

4

∑
µ=1

p6
µ , p[8] =

4

∑
µ=1

p8
µ ... (3.1)

We start by expanding the RC already averaged over the cubic orbits around p[4] = 0 as,

Zlatt(a2 p2,a4 p[4],a6 p[6],ap4,a2
Λ

2
QCD) = Zhypcorrected(a2 p2,ap4,a2

Λ
2
QCD)+R(a2 p2,a2

Λ
2
QCD)

a2 p[4]

p2 + . . .

(3.2)

where R(a2 p2,a2
Λ

2
QCD) =

dZlatt(a2 p2,0,0,0,a2Λ2
QCD)

dε
|
ε=p[4]/p2�1 = ca2p4 + ca4p4a2 p2. (3.3)

The effect of the H(4) corrections can be seen in Figs. 1 and 2.
Then in order to take into account the lattice artifacts which are invariant under O(4) we

explicitly add O(4) lattice artifacts in the running of the RCs. In the case of the quark wave
function renormalization we utilize the OPE inspired formula for the perturbative running of Zq [6]

Zhyp−corr
q (a2 p2) = Zpert RI′

q (µ2)cRI′
0Zq

(
p2

µ2 ,α(µ))

×

1+
〈A2〉µ2

32p2

cMS
2Zq

( p2

µ2 ,α(µ))

cRI′
0Zq

( p2

µ2 ,α(µ))

cRI′
2Zq

( p2

µ2 ,α(µ))

cMS
2Zq

( p2

µ2 ,α(µ))


+ ca2p2 a2 p2 + ca4p4 (a2 p2)2. (3.4)

The coefficients cRI′
0Zq

, cRI′
0Zq

and cMS
2Zq

are known perturbatively [16, 17]. While Zpert RI′
q (µ2) , 〈A2〉µ2 ,

ca2p2 and ca4p4 will be determined through fitting, see Fig. 3. Note the presence of the gluon
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Figure 3: The running of Zq for the ensemble 3mp.

condensate, 〈A2〉µ2 , which plays a crucial role in the RC of gauge variant quantities such as the
quark field and since also the whole computation takes place in a gauge fixed setting. One can
immediately see that the running formula contains O(4) invariant lattice artifact terms ∝ a2 p2 and
∝ (a2 p2)2. We use similar running formulae for all the RCs and we refer the reader to [18] for all
the details. Note that for the other composite operators we might have terms ∝ 1/(a2 p2) which also
mainly accounts for the gluon condensate for ZP,ZS and Z44. The perturbative running allows us to
run the RCs up to large scales, such as, 10GeV and at this point we use perturbative formulae [19] to
convert our results to the MS scheme which will allow us to make contact with phenomenological
calculations and experiments. In the following table we tabulate all the results for the RCs in the
MS scheme at 2GeV.

β Zq ZS ZP ZV ZA ZP/ZS Z44

1.90 0.762(3)(5)(2) 0.722(3)(5)(9) 0.431(3)(3)(6) 0.623(2)(1)(5) 0.717(1)(2)(4) 0.597(4)(4) (3) 0.973(9)(7)(30)
1.95 0.770(2)(6)(6) 0.722(4)(5)(3) 0.461(2)(4)(5) 0.639(2)(1)(4) 0.726(2)(2)(4) 0.638(4)(4)(3) 0.977(12)(11)(30)
2.10 0.787(2)(6)(6) 0.725(2)(5)(3) 0.522(1)(4)(1) 0.687(1) (1)(2) 0.755(1)(2)(4) 0.720(4)(2)(5) 1.019(8)(6)(30)

Table 2: Final results for N f = 4 RCs in the MS scheme at 2 GeV. We have quoted the statistical error in the
first parenthesis, while in the second parenthesis the systematic error due to cutoff effects and in the third
parenthesis we quote the systematic error originating from the chiral extrapolation.

4. Conclusions and Outlook

We have presented our results for the RCs of the quark propagator, densities and currents and
for the O44 twist-2 operator for N f = 4 twisted mass fermions. We have implemented a system-
atic and rigorous procedure for the correction of the hypercubic lattice artifacts. We have treated
the main source of uncertainty, the cutoff effects in a non perturbative way for the O(4) breaking
artifacts as well with an OPE inspired perturbative formula for the O(4) invariant artefacts. For a
comparison with experiments and phenomenological calculations our results, obtained in the RI’-
MOM scheme, have been converted to the MS scheme at 2GeV. We plan to apply our method to
other twist-2 operators containing more than one covariant derivatives as well as to the new config-
urations that will be produced shortly by the ETMC at almost the physical point.
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