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1. Introduction

There are several methods to renormalize the lattice operators onto those defined in the contin-
uum renormalization scheme such as the MS scheme. Schrödinger functional [1] and RI/MOM [2]
approaches are among the popular choices. The former provides precise and fully non-perturbative
renormalization at the cost of generating dedicated ensembles. The renormalization condition in
the latter approach is imposed on the vertex function at a fixed gauge and it involves (continuum)
perturbative expansion which is calculated only at one- or two-loop order.

In this work, we investigate the determination of the renormalization constants by the X-space
method, which was originally suggested in [3] and has been developed in [4, 5]. In this method,
the renormalization condition is imposed on two-point correlation functions of the operators to be
renormalized. Unlike RI/MOM, the X-space method enables us to renormalize by a gauge invariant
quantity. By keeping the distance finite, one can avoid extra divergences due to contact terms.
Another important advantage is that the perturbative expansion on the continuum side is available
to the four-loop level for the quark bilinear operators [6]. On the other hand, a potential problem
of the X-space method is the requirement for a "window" where the continuum perturbation theory
can be applied and the lattice calculation with minimal discretization effect is possible.

In this report, we present the preliminary results of the determination of renormalization con-
stants of quark non-singlet bilinear operators using the X-space method. We obtain good precision
on the lattices generated with the 2+ 1 flavors of Möbius domain-wall fermions and Symanzik
improved gauge action [7]. We work on 323 × 64 lattices at a−1 = 2.4 GeV and 483 × 96 lattices
at a−1 = 3.6 GeV, both having matched physical volume and similar input physical masses in the
window of Mπ : 300 ∼ 500 MeV.

2. Sketch of the X-space method

We impose the renormalization condition on massless correlation functions of quark (non-
singlet) bilinear operators, which are defined as

ΠSS(x) =
⟨
S(x)S(0)

⟩
, ΠPP(x) =

⟨
P(x)P(0)

⟩
, (2.1)

ΠVV(x) =
4

∑
µ=1

⟨
Vµ(x)Vµ(0)

⟩
, ΠAA(x) =

4

∑
µ=1

⟨
Aµ(x)Aµ(0)

⟩
, (2.2)

where S and P are scalar and pseudoscalar densities, Vµ and Aµ are vector and axial-vector currents.
Flavor indices are omitted for simplicity, but they are understood as isospin triplet operators of light
quarks. These bilinear operators on the lattice are to be renormalized onto the MS scheme at 2 GeV,
i.e.

OMS
Γ |2 GeV = ZMS/lat

Γ (2 GeV;a)Olat
Γ |a, (2.3)

for each quark bilinear operators OΓ ∈ {S,P,Vµ ,Aµ}.
Since these correlation functions have two bilinear operators, the renormalization condition is

given by

ZMS/lat
Γ (2 GeV;a)

2
Πlat

ΓΓ(x)|a = ΠMS
ΓΓ (x)|2 GeV, (2.4)
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Figure 1: Correlation function for P channel
which are purely measured on the lattice in the en-
semble 483 ×96, β = 4.35, amud = 0.012, ams =

0.018 and that in the free system plotted with that
in free continuum theory.
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Figure 2: Correlation function after applying tree-
level correction to that in Fig. 1 with the discrimi-
nation of the range θ > 30◦ (open diamond) from
θ ≤ 30◦ (filled diamond).

or

ZMS/lat
Γ (2 GeV;a) =

√
ΠMS

ΓΓ (x)|2 GeV

Πlat
ΓΓ(x)|a

, (2.5)

where ΠMS
ΓΓ and Πlat

ΓΓ are correlation functions in the continuum theory or measured on the lattice.
We perform two calculations to obtain the renormalization constants:

• Πlat
ΓΓ(x)|a : Correlation functions calculated on the lattice and taken the chiral limit.

• ΠMS
ΓΓ (x)|2 GeV : Massless continuum correlation functions renormalized at 2 GeV in the MS

scheme.

In this process, we should choose x in the window a≪|x|≪Λ−1
QCD in order to avoid discretiza-

tion effect and perturbative ambiguity.

3. Correlation functions measured on the lattice

Figure 1 shows x2-dependence of short-distance lattice correlator of pseudoscalar channel plot-
ted as a function of x2 (red). In this plot, we also show the two-point correlator calculated at the
tree-level, i.e. no strong interaction (blue). The data show substantial violation of the rotational
symmetry, but apparently their short-distance behavior is rather precisely reproduced by the free
propagator. The simplest example is the two-points at (x/a)2 = 4 where (2,0,0,0) and (1,1,1,1)
are different 10-times, but they are well exploited at tree-level.

We can thus eliminate the bulk of discretization effect by subtracting the tree-level contribution
of the discretization effect as

Πlat
ΓΓ(x)−→ Πlat

ΓΓ(x)−
(

Πlat, f ree
ΓΓ (x)−Πcont, f ree

ΓΓ (x)
)
. (3.1)

The results are shown in Fig. 2. We note that the vertical axis in the linear scale rather than logarith-
mic. Reductions of the Lorentz violation is quite clear. A similar subtraction was introduced, but
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Figure 3: Massless correlators from perturbation theory with N f = 3, ΛQCD = 340 MeV, scalar channel at
2 GeV in MS scheme (left panel) and vector channel (right panel).

multiplicatively, i.e. multiplying the original correlator Πlat
ΓΓ(x) by the ratio Πcont, f ree

ΓΓ (x)/Πlat, f ree
ΓΓ (x).

We find that (3.1) works slightly better to eliminate the Lorentz violating effect.
Another way to reduce discretization effect is suggested [5] on top of (3.1). Let us define θ as

an angle between x and the direction (1,1,1,1). One may find that the discretization effect becomes
more pronounced for large θ . By inspecting the results, we decided to drop the points of θ > 30◦.
In Fig. 2, the discarded points are shown by open symbols. The remaining points (blue diamonds)
are quite smooth as a function of (x/a)2.

4. Correlation functions computed from continuum perturbation theory

Perturbative expansion of the massless correlators in the MS scheme

ΠMS
SS,PP(x,µ) = ΠM̃S

SS,PP(x, µ̃) =
3

π4x6

(
1+∑

n
C̃S

n ãn
s

)
, (4.1)

ΠMS
VV,AA(x) = ΠM̃S

VV,AA(x) =
6

π4x6

(
1+∑

n
C̃V

n ãn
s

)
, (4.2)

ãs =
αM̃S

s (µ̃ = 1/x)
π

=
αMS

s (µ = 2e−γE/x)
π

, (4.3)

are known up to n = 4 [6]. C̃S,V
n are perturbative coefficients and as = αs/π . The running of αs is

also known up to four-loop level [8] in the MS scheme.
Since the scale µ and µ̃ in these formulae depend on x, we need to perform the scale evolution

for correlation functions of scalar and pseudoscalar correlators to those at 2 GeV in the MS scheme.
The scale evolution is calculated as

ΠM̃S
SS,PP(x, µ̃1) =

[
c(as(µ̃1))

c(as(µ̃0))

]−2

ΠM̃S
SS,PP(x, µ̃0), c(x)≡ exp

[∫ x
dx′

γm(x′)
β (x′)

]
, (4.4)

where γm and β are the quark mass anomalous dimension and the QCD beta function, and c(x) is
given in [9, 10]. The Ward-Takahashi identity guarantees that the correlation functions of vector or
axial-vector currents are scale independent.
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Figure 4: Massless correlators from perturbation theory with improved convergence and chiral limits of
lattice correlators times some constants, which are squares of renormalization constants. These lattice cor-
relators are measured on 483 ×96, a−1 = 3.6 GeV lattice, while a sea quark is still massive ams = 0.0180.

As shown in Fig. 3, the convergence of the perturbative series in (4.1) and (4.2) is not suf-
ficiently good to achieve precise determination of the renormalization constant already at x ≃
1 GeV−1. At longer distances, the expansion is even divergent. the perturbative series in N f = 3
theory are given as

ΠM̃S
SS (x, µ̃) =

3
π4x6 (1+0.67ãs −16.3ã2

s −31ã3
s +497ã4

s ), (4.5)

ΠM̃S
VV(x) =

6
π4x6 (1+ ãs −4ã2

s −1.9ã3
s +94ã4

s ). (4.6)

When ãs = 0.1, the expansion for SS is like 1+0.067−0.163−0.031+0.050 and does not seem
to converge.

In order to avoid this problem, we expand correlators in terms of the coupling a∗s at another
scale µ∗ according to the BLM prescription [11]. In this way, one can effectively absorbs higher-
order contribution from vacuum polarization effects into lower-orders. The scale for VV (and AA)
is given by µ∗ = µe−11/6+2ζ (3) ≃ 1.8µ . We use the same scale also for SS (and PP).

The resulting expansion becomes

ΠM̃S
SS (x,µ∗) =

3
π4x6 (1+2.9a∗s +1.1a∗2

s −42a∗3
s +24a∗4

s ), (4.7)

ΠM̃S
VV(x) =

6
π4x6 (1+a∗s +0.083a∗2

s −6a∗3
s +18a∗4

s ), (4.8)

which obviously has much better convergence property. The scale evolution for ΠSS to 2 GeV in
MS is then calculated using (4.4).

Figure 4 shows the continuum correlators obtained with the above procedure at each order of
the perturbative expansion. It clearly shows a good convergence even at lower scales x2 ∼ 3 GeV−2.

5. Preliminary results

Figure 4 also shows the lattice data rescaling by a factor such that they agree with the pertur-
bation theory in the region of x2 ∼ 2 GeV−2. This factor corresponds to the renormalization factor

5
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Figure 5: Renormalization constants with the dependence on the renormalization point x, where the param-
eters are same as Fig. 4.

squared as given in (2.4).
Figure 5 shows the renormalization constant calculated from eq. (2.5) with dependence on the

renormalization point x. Since LHS of eq. (2.5) is independent of x, we should extract RCs from
a range where x-dependence of RCs is approximately absent. Since we employ the Möbius of
domain wall fermions which have excellent chiral symmetry, we can assume ZS = ZP, ZV = ZA in
the chiral limit, and extract ZS and ZV as an average of {ZS,ZP} or {ZV,ZA}, respectively. Here the
difference between ZS and ZP, or ZV and ZA, coming from higher orders of the operator product
expansion is considered as a part of systematic errors.

Table 1 shows the preliminary results for RCs. Since we calculate only at two strange quark
masses for each lattice spacings, we don’t take the chiral limit of ms. Systematic errors, which are
the second errors in Tab. 1, are typically 1% or less except for ZS at a−1 = 2.4 GeV lattice with
ams = 0.040. This 1% precision for ZS is better than that of other methods, such as RI/MOM at
similar lattice spacings.

Table 1: Preliminary results of computing renormalization constants. First error means statistical error and
second one means systematic error.

a−1 [GeV] ams ZMS/lat
S (2 GeV) ZMS/lat

V

2.4 0.030 1.092(6)(12) 1.013(2)(7)
2.4 0.040 1.093(8)(28) 1.017(2)(9)
3.6 0.018 0.973(5)(6) 0.999(3)(5)
3.6 0.025 0.965(7)(11) 0.994(6)(5)
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6. Summary

We investigate the Non-perturbative renormalization of flavor non-singlet quark bilinear op-
erators using the gauge invariant X-space method for the action of 2 + 1 Möbios domain-wall
fermions and Symanzik improved gauge action.

Discretization effect of correlation functions measured on lattice are mostly reduced by apply-
ing the tree-level correction and the democratic cut. On the other hand, convergence of perturbation
theory is sufficiently improved by expanding correlators into a polynomials of coupling a∗s at an
appropriate scale µ∗.

The systematic error we reach is roughly within 1%, which has been difficult systematic pre-
cision for renormalization constants of scalar and pseudoscalar dencities. Therefore the X-space
method may be a very useful way of the non-perturbative renormalization.
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