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1. Introduction

In our understanding of the Standard Model the strong coupling g(µ) plays an essential rôle
as its parametric uncertainty is one of the dominant sources of uncertainty in Higgs decays for
instance. Using lattice gauge theory we are in the fortunate position to study QCD for any number
of dynamical flavours Nf. In contrast to any experimental data analysis in high energy physics, we
are able to employ non-perturbative definitions of the strong coupling by means of any suitable
lattice observable Olat, such that [1]

g2(µ) = lim
a→0

cO(a,µ) ·Olat(a,µ) . (1.1)

The normalization factor cO(a,µ) guarantees g2 = g2
0 +O(g4

0) at leading order in lattice pertur-
bation theory. Any lattice observable fulfilling eq. (1.1) defines a renormalization scheme with a
different scale-dependent renormalized coupling. As in QCD conformal symmetry of the massless
Lagrangian is broken on the quantum level, one can define a renormalization group (RG) invariant,
the Λ-parameter,

Λ≡ µ
[
b0g2(µ)

]−b1/(2b2
0) e−1/(2b0g2(µ)) exp

{
−
∫ g(µ)

0
dg
[

1
β (g)

+
1

b0g3 −
b1

b2
0g

]}
. (1.2)

This definition holds for any µ , and its value is trivially scheme-dependent in the sense that the
ratio Λ1/Λ2 for two different schemes can be computed exactly. It has become standard to quote g2

at the electroweak scale given by the Z-boson mass, µ = MZ , in the intrinsically perturbative MS
scheme.

A fully non-perturbative computation of the Λ-parameter through lattice computations pro-
ceeds in the following way. One chooses an appropriate definition of a renormalized coupling (1.1)
in a finite-volume renormalization scheme which interlinks the energy scale and the finite size of
the system, µ ∝ L−1. Starting at a high energy scale where perturbation theory is applicable with-
out doubt, say at µPT ∼MZ ∼ 100 GeV, one iteratively applies a finite-size rescaling technique by
computing the change of the renormalized coupling from a change of energy scales (or L) by fac-
tors of s = 2 for instance. After N steps one arrives at some hadronic scale µhad = µPT/sN ≡ L−1

max,
where a connection to large volume (LV) lattice simulations can be established. This allows to de-
termine Λ in terms of some experimentally known hadronic observable, fhad, used to set the overall
energy scale in the LV simulations, and thus in physical units. For ΛMS this strategy decomposes
as follows:1

ΛMS = [ fhad]exp×
[

ΛMS
Λ

]
exact
× Λ

fhad
with

Λ

fhad
=

LmaxΛ

Lmax fhad
. (1.3)

The total error on Λ is composed of that from the LV scale setting (Lmax fhad) and the determination
of LmaxΛ from the non-perturbative running in the intermediate, finite-volume scheme. While for
Nf = 2 [2] the error of Lmax fhad ≡ L1 fK = 0.315(8)(2) contributed about 2

5 to the total error of
6% on Λ/ fhad, it will become negligible in the near future due to new developments [3]. The
current world average(s) for α

(5)
s (MZ) are 0.1183(12) from PDG [4] using experiments only, and

0.1184(12) from the average of present lattice determinations [1]. This 1% error translates into an
error of about 6% in Λ

(5)
MS

. For our new estimate of Λ(Nf=3)/ fhad, to be derived from LV lattices
within the current CLS effort [5], it is thus worthwhile to aim for an accuracy of about 4% or better.

1To ease our discussion we work at fixed Nf, i.e., no quark-tresholds are taken into account.
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topic SF coupling GF coupling remark

DEFINITION g2
SF(L) = k〈 ∂Γ

∂η
〉−1

η=0 g2
GF(L) = 〈t2E〉/N

SF BOUNDARY FIELD 6= 0 = 0

PT MATCHING ∼ 64 GEV 2-loop tree-level GF @ higher energies

TYPICAL # MEAS. O(100 000) O(1000) ∆g2
SF'∆g2

GF
(τint, V , . . . ) L≈0.4fm

CUTOFF EFFECTS mild rather large (so far)
2-loop improvement tree-level improvement
⇒ L/a = 6 . . .12 ⇒ L/a = 8 . . .16 controlled a→ 0

∆g2/g2 ∼ g2 const. for fixed #meas.
⇒ ∆L/L const. ∼ const/g2

Table 1: General comparison of gradient flow and SF running coupling schemes.

2. Why choose a new strategy?

We have seen that by mainly controlling the accuracy of the non-perturbative RG running,
we can improve the determination of Λ. In the past, the Schrödinger functional (SF) coupling
gSF [6] has been the most useful definition of a finite-volume renormalization scheme compatible
with the strategy behind eq. (1.3). A more recent development that can be used along the same
lines, is given by one of the many running coupling definitions employing the Yang–Mills gradient
flow (GF) [7], gGF in short. Initially introduced in [8] it has been studied in a finite-volume setup
in [9, 10, 11]. Especially, the apparently much better noise-to-signal ratio of gGF raises hope to
significantly increase the accuracy in the RG running. To what extent this statement complies with
the renormalization group running covering two orders of magnitude in energy scales, we will
see below. First we start with a general comparison of SF and GF couplings, both defined with
Dirichlet boundary conditions in time. A short summary is given in table 1.

The SF coupling, gSF(L), is defined as the response to a variation of the (QCD) action about
a non-vanishing Yang–Mills background field imposed through boundary conditions at Euclidean
time x0 = 0,T (T = L) [12]. As such it is entirely sensitive to the physical extent L. The coupling
gGF(L) on the other hand is also sensitive to short distances since it is given by the Yang–Mills
energy density defined with vanishing background field at finite gradient flow time t = (cL)2/8 for
some fixed constant c ∈ [0.25,0.5] [10]. While for both definitions the tree-level normalization
cO(a,µ) is known for different lattice actions [12, 10, 11], cutoff effects are mild for gSF but
large for gGF.2 Additionally, for the SF coupling perturbative improvement is known up to 2-
loop order but unknown for the GF coupling. Both facts together with additional details such as the
respective integrated autocorrelation time, statistical variance and so on, influence the precision of
the continuum limit of the lattice step-scaling function Σ,

σ(u) = lim
a→0

Σ(u,a/L) , Σ(u,a/L) = g2(2L)
∣∣
g2(L)=u,Lm=0 . (2.1)

2A consistent Symanzik improvement to reduce cutoff effects in gradient flow observables and thus gGF has been
proposed in [13].
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Figure 1: (Left) Sketch of our proposed strategy to non-perturbatively switch running coupling schemes at
an intermediate energy scale µswi = 1/Lswi. (Right) Data of SF step-scaling functions for different dynamical
flavour content, Nf = 0,2,3,4 [12, 14, 15], and its leading asymptotic form b0 +O(u) (dashed lines).

It has to be computed numerically at chosen values of un ≡ g2(Ln), n ∈ {1, . . . ,N} in order to cover
the energy range under consideration. From past experience we expect that lattice sizes L/a < 12
are sufficient to control the continuum extrapolation of ΣSF(u,a/L). On the other hand lattices
with L/a > 8 are needed to achieve an equivalent accuracy in the computation of ΣGF(u,a/L).
At a fixed volume with L ≈ 0.4fm, and choosing c ≡

√
8t/L = 0.3 such that g2

SF(L) ' g2
GF(L),

a numerical study has shown that in order to achieve the same accuracy in both couplings one
needs 100 times more measurements of g2

SF. Finally, the two couplings show a very different
leading scaling behaviour of the relative error Rg2 ≡ ∆g2/g2 which directly translates via the RG
into RL ≡ ∆L/L =−∆g2

/
2gβ (g). Considering only the dominant contribution, β (g)'−b0g3, this

results into an error of RL = Rg2

/
2b0g2, with (2b0)

−1 ≈ 9 in three-flavour QCD. With a behaviour
of Rg2

SF
∼ g2 and Rg2

GF
∼ const, a relative scale uncertainty of ∆L/L ∼ const follows for the SF

coupling and ∆L/L∼ 1/g2 for GF couplings at a fixed number of independent measurements.
Every step in the finite-size scaling method contributes to the total error budget of the RG

running, giving as first rough estimate(
∆[LmaxΛ]

LmaxΛ

)2

'
N

∑
n=1

(
∆L
L

∣∣∣
un

)2

, un = σ
−1(un−1) , u0 = g2(Lmax) . (2.2)

From this point of view it should be clear that at constant effort, the SF coupling accumulates
approximately the same error in each step while the GF coupling definition shows an error that is
steadily growing towards the high energy regime. Of course, if computational costs are irrelevant
this problem could be solved by brute force calculations. So far we have discussed both schemes
under the aspect of statistical accuracy only, but there are more points to be taken into account,
for instance the matching to PT at high energies. For gSF the matching coefficients in g2

s = g2
s′ +

∑
`
k=1 χ(k)g2k+2

s′ are known up to `= 2 loop order [17] while no coefficient is known for gGF so far.
Even with a given 1-loop coefficient, gGF still has to be matched at higher energies to control this
step equally well, and thus increases the costs and statistical error in the RG running. Additional
points will be elucidated in more detail in a forthcoming publication.
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Having the global aspect of our strategy in mind we have to conclude that the GF coupling
scheme is advantageous at hadronic scales while the SF coupling scheme still is to be favoured at
high energy scales.

3. Changing the standard strategy

From the facts presented in the previous section the optimised way to improve the computation
of Λ seems to be to combine both schemes. As depicted in the left panel of Fig. 1, one computes
the running of the chosen gradient flow coupling at low energies up to an energy scale of µswi =

1/Lswi ≡ sK/Lmax:

uGF
k = g2

GF(Lmax/sk) , k ∈ {0,1, . . . ,K} , uGF
0 = g2

GF(Lmax) ,

σGF
(
g2

GF(L/s)
)
= g2

GF(L) , uGF
swi = g2

GF(Lmax/sK) . (3.1)

At the scheme-switching scale Lswi one has to set up additional simulations defined through a line
of constant physics, (g2

GF(Lswi),Lswim) = (uGF
swi,0), in order to compute the SF coupling via

uSF
swi = lim

a→0
Ψ(u,a/L) , Ψ(u,a/L) = g2

SF(L)
∣∣
u=uGF

swi,Lswim=0 , (3.2)

as accurately as possible. From here on one continues in the new scheme

uSF
m = g2

SF(Lswi/sm) , m ∈ {0,1, . . . ,M} , uSF
0 = g2

SF(Lswi) ,

σSF
(
g2

SF(L/s)
)
= g2

SF(L) , uSF
PT = g2

SF(Lswi/sM) , (3.3)

with M = N−K if the same scale difference is to be covered as originally anticipated by µ
−1
PT =

Lmax/sN , and where ultimately the connection to the perturbative running can be safely established.
We remark that we could have started our discussion also at high energies, i.e., reversing the strat-
egy and interchanging SF and GF in eq. (3.2). In fact, carrying out both procedures might help to
increase control over this non-perturbative scheme-switching step.

4. Present status

For various practical reasons we have started with the running of the SF coupling from high
to intermediate energies, reaching couplings as large as uSF = 2 within our new strategy. We are
working in a massless renormalization scheme with Nf = 3 quark flavours and thus need to tune
to vanishing PCAC quark mass, Lm = 0, for plaquette gauge action and non-perturbatively O(a)
improved Wilson quarks. This has been done for lattice sizes L/a = 4, . . . ,16 and bare gauge
couplings 6≤ β ≡ 6/g2

0 ≤ 9. To minimise tuning efforts in subsequent projects, we have done this
more precisely than in the past, allowing us to smoothly parameterise the critical line mcrit(g2

0,a/L)
on the considered lattice sizes for 0 ≤ g2

0 ≤ 1. Employing the perturbative 2-loop formula for
mcrit(g2

0,a/L), we use the fit ansatz

amcrit(g2
0,a/L) = [amcrit(g2

0,a/L)]2-lp + k1(a/L) ·g6
0 + k2(a/L) ·g8

0 + k3(a/L) ·g10
0 (4.1)

to describe our data, c.f. left panel of Fig. 2. The difference between a direct fit for each L/a and
global fits with varying coefficient functions k1,k2,k3 serves as a quality criteria for our interpo-
lating function. We know that for the accuracy we are aiming at, any additional uncertainty from
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Figure 2: (Left) Data and interpolating functions for critical line mcrit(g2
0,a/L) along constant L/a. (Right)

Non-perturbative continuum step-scaling function σSF(u) vs. perturbative evaluation.

a tuning to a line of constant physics becomes negligible, if |Lm| < 0.005 is satisfied. Our final
estimates fulfill |Lm|< 0.001.

To compute the SF step-scaling function σSF(u) we aim for simulations with 1.1 ≤ uSF ≤ 2,
uniformly distributed in 1/uSF. For L/a ∈ {4,6,8} we use 8 different β values but simulate only
three for L/a ∈ {10,12} in order to minimise computational costs in the finite-size rescaling step
L→ 2L. Along the lines of [16, 15] we interpolate our data for g2

SF(β ,L/a) and g2
SF(β ,2L/a).

The computation of the two-loop improved lattice step-scaling function Σ
(2)
SF (u

SF,a/L) [17] thus
requires g2

SF(β ,L/a) to be fixed at certain values of uSF in line with (3.3). The continuum limit
is taken individually at each value of uSF

m with full error propagation. The coarsest lattice only
serves the purpose of estimating the size of cutoff effects but is never taken into account in the
analysis. Furthermore, data for 2L/a = 20 is still missing and cannot be included at present. The
plot provided in Fig. 3 thus shows a (preliminary) continuum limit of Σ

(2)
SF (u,a/L) using a local fit

ansatz with linear scaling in (a/L)2 towards the continuum. This gives the largest error on σSF(u)
which will be improved after studying appropriate global fit ansätze in more detail. With the data
at hand we use the standard interpolation

σ(u) = u+ s0u2 + s1u3 + sfit
2 u4 + sfit

3 u5 , s0 = 2ln(2)b0 , s1 = s2
0 +2ln(2)b1 , (4.2)

with parameters sfit
2 ,s

fit
3 and s0, s1 taken from perturbation theory. In Fig. 2 we plot the data points

and interpolating fit function of σSF(u) together with their known perturbative behaviour and re-
mark that the important information lies in the well-defined error of the former. To look at our
current results from a global perspective, we compare it in Fig. 1 (right panel) to previous determi-
nations of σSF for Nf = 0,2,4. For a better discrimination we plot [σSF(u)−u]/[2ln(2)u2] such that
the axis intercept corresponds to b0. This figure provides a beautiful demonstration of our current
understanding of asymptotic freedom at the non-perturbative level.
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5. Conclusions & Outlook
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Figure 3: Local (preliminary) continuum extrapola-
tions of Σ

(2)
SF (u

SF,a/L) using L/a≥ 6 lattices.

We have presented an extension to the
ALPHA-strategy towards future high preci-
sion computations of the Lambda parame-
ter. It still keeps all systematic errors un-
der control by following a traditional finite-
size scaling approach to non-perturbatively
connect low- and high-energy regimes. The
gain in precision is achieved by exploiting
complementary properties of the SF and gra-
dient flow coupling together with a non-
perturbative scheme switch at intermediate
energies. While the SF part of the computa-
tions has been finished we are now working
on the computation of the gradient flow step-
scaling function and the non-perturbative
scheme-switching step.
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