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1. Introduction

In Lattice QCD, the Wilson discretization of the fermion action introduces O(a) cutoff effects,
which may be systematically reduced by the well-established Symanzik improvement programme
[1]. In the case of massless fermions, only the clover term with the Sheikholeslami-Wohlert coeffi-
cient csw [2] needs to be added to the action, but composite fields require additional improvement
terms [3].

The function csw(g2
0) has been determined for various numbers of massless, dynamical quark

flavours and different actions [4, 5, 6, 7, 8, 9, 10]. It has found successful application in simulations
with massless quarks (e.g. [11] with N f = 4) or light quarks (e.g. [12, 13] with N f = 3). In the
latter case, in addition to the clover term there exist mass-dependent improvement terms of order
O(amq,light), which can usually be treated perturbatively or even be neglected if amq,light is small.

The present work aims at improvement of the general, non-degenerate four flavor Wilson
fermion action with a massive charm quark. In that case, an incomplete knowledge of the coef-
ficients of the mass-dependent improvement terms introduces large cutoff effects, see below. We
want to avoid both these large effects and the non-perturbative determination of a large number of
improvement coefficients. This is possible by switching to a massive improvement and renormal-
ization scheme, in which the improvement condition for csw is formulated at finite charm quark
mass along a line of constant physics (LCP).

2. Symanzik improvement with four non-degenerate quark flavors

We are interested in lattice QCD simulations with four flavors of Wilson quarks ψ ,

L = LG +LF , LF = ψ̄(DW +M+mcrit)ψ , (2.1)

LI,0 = L +aLsw , Lsw = csw(g2
0)ψ̄

i
4 σµνFµνψ , (2.2)

and consider a non-degenerate matrix of bare subtracted quark masses

M = diag(mq,u,mq,d ,mq,s,mq,c) , mq,i = mi,0−mcrit . (2.3)

The particular choice of a lattice gauge action LG is irrelevant for the present discussion, but will
be the tree-level improved Lüscher-Weisz gauge action in section 5. While LI,0 is the correct
on-shell O(a) improved action density for simulations at the critical line (mq,i = 0), additional
mass-dependent O(a) terms arise for non-vanishing quark masses. They read

LaM = σ1ψ̄M2
ψ +σ2Tr(M)ψ̄Mψ +

(
σ3Tr(M2)+σ4Tr(M)2)

ψ̄ψ +σ5Tr(M)Tr(FµνFµν) (2.4)

and should be included in the simulation (LI,M = LI,0 +aLaM) with suitably chosen coefficients
σi(g2

0). One may absorb the above improvement terms into a redefinition of the bare parameters of
the theory,

g2
0→ g̃2

0 = g2
0(1+abg(g2

0)Tr[M]/N f ) , mq,i→ m̃q,i = mq,i fi(g2
0,{aM}) , (2.5)

where f is a non-trivial function of the bare subtracted quark masses in aM [3, 14] and a number
of improvement coefficients related to those in (2.4).
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For full O(a) improvement of the action at finite quark mass, a non-perturbative determination
of the numerous improvement coefficients is in principle necessary. However, this is clearly out
of reach for any number of flavors. In the past, without a charm quark, one could circumvent
the problem due to the smallness of the mass-dependent improvement terms. For typical lattice
spacings a≤ 0.1 fm, assuming mq,s ≈ 100 MeV and mq,c ≈ 1 GeV, they are roughly of sizes

amq,s . 0.05 , amq,c . 0.5 . (2.6)

Hence, a viable way for small lattice spacings and quark masses, i.e. simulations with N f ≤ 3, has
been to treat the terms appearing in LaM as small and account for them approximately.

Regarding (2.6), the effects of the charm mass in the improved theory are numerically much
more important, which makes the non-perturbative treatment of all improvement coefficients un-
avoidable. Even if such a treatment was feasible, any uncertainties in the improvement coefficients
would be amplified by the large charm mass, leading to a significant uncertainty in the improved
theory. Note that the same issue concerns the renormalization constants, for which it arises already
at the O(a0) level,

mR,i = Zm

[
mq,i +(rm−1)

Tr[M]

N f

]
+O(a) . (2.7)

In particular for observables in the light sector (no charm valence quarks involved), the large charm
mass cutoff and renormalization effects and assigned uncertainties would be likely to surpass the
small physical effects of a massive dynamical charm quark [15] that one is interested in.

3. Massive renormalization and improvement scheme

For the reasons discussed in the previous section, the massless renormalization and improve-
ment scheme is impractical and unstable if a physical charm quark is to be included in the sea.
Instead, we choose a massive scheme, in which the mass dependent improvement terms are ab-
sorbed in the bare parameters Eq. (2.5), which are tuned such that a LCP is followed. Accordingly,
the renormalization and improvement conditions are imposed at finite quark masses, and the coef-
ficients become mass-dependent:

Z(g2
0,aµ)→ Z(g2

0,aM,aµ), c(g2
0)→ c(g2

0,aM) . (3.1)

Here, Z and c are renormalization constants (depending in general on a renormalization scale µ) and
improvement coefficients, respectively, and we recall that aM is the bare subtracted mass matrix.
The action in the massive scheme then simply reads

LI,M = L +acsw(g2
0,aM)ψ̄

i
4

σµνFµνψ . (3.2)

This scheme dispenses with the need for the non-perturbative determination of a large number of
improvement coefficients at the cost of a more complicated renormalization pattern. Note that
the mass-dependence of the improvement coefficients, Eq. (3.1), is not a necessity for O(a) im-
provement, as the difference is of O(a2) in the action. However, we will use this form both for
consistency and in the hope of reducing the overall O(a2) cutoff effects.
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4. Determination of csw in N f = 3+1

There are two qualifications to be added to the determination of csw in the massive scheme.
First, the major effect of the non-vanishing masses on csw stems from the charm quark. In order to
substantially reduce the effort, it is therefore reasonable to treat the up, down, and strange quark as
mass-degenerate light quarks with mass amq,l , i.e. to determine csw in N f = 3+1.

Second, it is not practicable to vary all the bare parameters (g2
0,amq,l,amq,c) and find an in-

terpolating formula for csw in this 3-dimensional space. Hence, we will fix the masses to approxi-
mately physical values, indicated by an asterisk. These two approximations,

csw(g2
0,aM)

N f =3+1
−−−−−→ csw(g2

0,amq,l,amq,c)
fix ren.−−−→
masses

csw(g2
0,am?

q,l,am?
q,c) , (4.1)

together explicitly introduce O(a2) effects proportional to

mq,u−m?
q,l, mq,d−m?

q,l, mq,s−m?
q,l, mq,c−m?

q,c , (4.2)

which modify the already existing cutoff effects of this order. These modifications are small if the
mass differences are small. The relevant point obviously is to ensure that the last difference is not
too large.

4.1 Line of constant physics

The improvement condition on csw will be imposed with the help of Schrödinger functional
correlation functions (sec. 4.2). The relevant physical scales of the N f = 3+1 theory in such a finite
volume are the size L of the box and the renormalization group invariant masses Ml and Mc (not to
be confused with the mass matrix M) of the light and charm quark, respectively. The bare masses
are fixed to m?

q,l and m?
q,c (cf. Eq. (4.1)) by requiring the RGI masses to assume their physical

values, M?
l and M?

c . In order to fix these in physical units, a scale is needed. The obvious choice is
L, which we keep constant as well, at a value L? to be specified:

L = L?, LMl = L?M?
l , LMc = L?M?

c . (4.3)

Not only is the approach to keep all physical scales fixed convenient, it also has the advantage of
avoiding possibly large O(a) ambiguities in csw, by forcing these to vanish proportional to a in the
limit g2

0→ 0. A discussion can for instance be found in section I.2.4.1 of [16]. The conditions (4.3)
define a line of constant physics (LCP), i.e. they determine the bare parameters (g2

0,am?
q,l,am?

q,c)

for a given lattice resolution L/a.
In order to realize the LCP on the lattice, it is reformulated in terms of three more easily

accessible quantities,

Φ1 = ḡ2
GF(L) (4.4)

Φ2 = L ·Γud (4.5)

Φ3 = L ·
(

Γuc−
1
2

Γud

)
. (4.6)
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Here, ḡ2
GF is the gradient flow coupling [17] as defined in [18] for Schrödinger functional boundary

conditions with c = 0.3 by means of the Wilson flow. The functions

Γi j =−∂̃0 log
(

f i j
A,I(x0)

)∣∣
x0=T/2 , (4.7)

are effective pseudoscalar meson masses with quark flavors i, j defined in terms of the Schrödinger
functional correlation function fA (see e.g. Eq. (6.11) in [3] for its definition). All Φi are associated
with T = L and vanishing boundary gauge fields. While each of them is a function of all three
physical scales (or equivalently all bare parameters), they were chosen such that each of them
dominantly depends on a single parameter. In terms of the Φi, Eq. (4.3) gets replaced by

Φi = Φ
?
i , i = 1,2,3 , (4.8)

where the (continuum) values Φ?
i correspond to the scales L?,M?

l and M?
c . In order to do the

translation between the two sets of quantities, one needs scale setting, mass renormalization and
the input parameters M?

l and M?
c . Since this is not available in N f = 3+ 1, we resort to N f = 2

results. While this alters the particular LCP that is established, it again only concerns the explicitly
introduced O(a2) effects in (4.2) via the values with asterisk. In N f = 2, the setting of the scale is
available from [19], and the hopping parameters which correspond to the input parameters M?

l [19]
and M?

c [20] can be derived under use of mass renormalization constants [19, 21], the improvement
coefficient bm [21] and the critical hopping parameter κcrit [22]. We then reused the ensembles
produced in the course of [22] with

L? ≈ 0.8 fm (4.9)

and L?/a = 12,16,20,24,32 in order to evaluate Φ?
i (a/L?). The results which we employ to define

the LCP in its form (4.8) are the continuum extrapolated values. We find

Φ
?
1 = 7.31, Φ

?
2 = 0.59, Φ

?
3 = 5.96 , (4.10)

from L? ≈ 0.8fm, M?
l ≈M(N f =2)

s /3 = 138/3 MeV [19], and M?
c ≈M(N f =2)

c = 1.51 GeV [20].

4.2 Improvement condition

Along the LCP, we impose the improvement condition for csw in the Schrödinger functional.
As this follows a standard procedure, we will not cover it here and refer to the original literature [3]
instead. Concerning the choice of Schrödinger functional parameters, we follow [10], with only a
few exceptions. First, with respect to the LCP, T = L? is kept, while L is reduced by a factor 2,
L = L?/2. This in particular implies that we use an even number of lattice sites in the temporal
direction, in contrast to [10]. Furthermore, the improvement condition in our case is

∆Mud = 0 . (4.11)

The quantity ∆Mud corresponds to ∆M (cf. Eq. (3.10) in [10]) in the previous determinations of
csw at vanishing quark masses. However, in contrast to these, we have to specify the quark flavors
(u,d) which enter, due to the different masses involved in our case. We thus use the PCAC relation
in the light sector, as we are mainly interested in improving light quark physics. Moreover, we do
not use a tree-level value ∆M(0) on the right hand side of (4.11), since this is not needed when one
performs the improvement on a line of constant physics, L = L?.
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csw g2
0 κl κc Φ1 Φ2 Φ3 L?∆Mud

1.6 1.7188 0.1403 0.1222 7.10(4) 0.56(2) 5.94(1) 0.133(7)
1.9 1.7847 0.1374 0.1203 7.18(2) 0.59(2) 5.96(1) 0.046(8)
1.95 1.7969 0.1369 0.1199 7.21(4) 0.60(2) 6.00(1) 0.040(8)
2.1 1.8340 0.1356 0.1190 7.36(5) 0.61(3) 6.02(1) 0.013(8)
2.2 1.8534 0.1345 0.1182 7.17(5) 0.60(3) 6.03(1) 0.002(8)
2.3 1.8825 0.13369 0.1180 7.33(6) 0.60(3) 5.96(1) 0.006(10)
2.4 1.9069 0.13278 0.1175 7.34(6) 0.58(4) 5.94(1) −0.018(9)

Table 1: Preliminary results for L/a = 8. At the bare parameters given in columns 2-4, the values Φi

sufficiently close to the LCP were found in T = L = L? simulations with vanishing boundary fields. At the
very same bare parameters, the quantity in the last column was obtained in simulations with half the spatial
size and non-vanishing boundary fields. The simulations were performed with the HMC of the openQCD
package [23] and error estimates have been obtained under use of the Γ-method [24].

1.5 2 2.5
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

csw

L
⋆
∆
M

u
d

 

 

Data

Linear fit

Impr.cond.

1.5 2 2.5
1.6

1.65

1.7

1.75

1.8

1.85

csw

g
2 0

 

 

Data

Linear fit

Impr.cond.

Figure 1: L?∆Mud (left panel) and g2
0 (right panel) for L/a = 8 as a function of csw and their linear interpo-

lation (green) to the improvement point (red). The data point at csw = 1.6 is excluded from the fits as it is
clearly outside the range of linear behaviour.

5. Results for L/a = 8

Preliminary results for L/a = 8 are listed in Tab. 1. The bare parameters were tuned such that
the Φi satisfy the LCP conditions (4.8) with allowed deviations of up to 5% for Φ1,Φ3 and 10% for
Φ2. The results for L?∆Mud as a function of csw are interpolated to the point where the improvement
condition (4.11) is fulfilled, as shown in the left panel of Fig. 1. A subsequent interpolation of g2

0
to the previously obtained csw gives the corresponding g2

0, see the right panel of Fig. 1. The results
of this procedure are

csw = 2.26(4), g2
0 = 1.87(1). (5.1)

6. Summary and outlook

We have developed a strategy to determine csw in N f = 3+1 with a massive charm quark. In
the framework of a massive renormalization and improvement scheme, a line of constant physics
is set up which aims at keeping in particular the charm quark mass fixed to an approximately
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physical value in order to avoid large mass-dependent cutoff effects. The first point for csw as a
function of g2

0 on the coarsest lattice with L/a = 8, a ≈ 0.1fm, has been computed. Simulations
on finer lattices, which correspond to smaller g2

0 and will enable contact with perturbation theory,
are on the way. So far, the main effort was in tuning to the proper line of constant physics, but this
step will become easier due to the gained knowledge. The invested effort is also valuable as the
approximate knowledge of κc(g2

0) will help to plan subsequent simulations in the improved theory
with a massive charm.

References

[1] K. Symanzik, Nucl.Phys. B226 (1983) 187 and 205

[2] B. Sheikholeslami and R. Wohlert. Nucl.Phys. B259 (1985) 572

[3] M. Lüscher, S. Sint, R. Sommer, P. Weisz. Nucl.Phys. B478 (1996) 365-400
[arXiv:hep-lat/9605038]

[4] M. Lüscher, S. Sint, R. Sommer, P. Weisz, U. Wolff. Nucl.Phys. B491 (1997) 323-343,
[arXiv:hep-lat/9609035]

[5] K. Jansen, R. Sommer. Nucl.Phys. B530 (1998) 185-203, [arXiv:hep-lat/9803017]

[6] N. Yamada et al., Phys.Rev. D71 (2005) 054505, [arXiv:hep-lat/0406028]

[7] S. Aoki et al. Phys.Rev. D73 (2006) 034501, [arXiv:hep-lat/0508031]

[8] N. Cundy et al. Phys.Rev. D79 (2009) 094507, [arXiv:0901.3302]

[9] F. Tekin, R. Sommer, U. Wolff. Phys.Lett. B683 (2010) 75-79, [arXiv:0911.4043]

[10] J. Bulava, S. Schaefer. Nucl.Phys. B874 (2013) 188-197, [arXiv:1304.7093]

[11] F. Tekin, R. Sommer, U. Wolff. Nucl.Phys. B840 (2010) 114-128, [arXiv:1006.0672]

[12] S. Aoki et al. JHEP 0910 (2009) 053, [arXiv:0906.3906]

[13] M. Bruno, D. Djukanovic, G. P. Engel, A. Francis, G. Herdoiza et al. (2014) [arXiv:1411.3982]

[14] T. Bhattacharya et al. Phys.Rev. D73 (2006) 034504, [arXiv:hep-lat/0511014]

[15] M. Bruno, J. Finkenrath, F. Knechtli, B. Leder and R. Sommer. (2014) [arXiv:1410.8374]

[16] R. Sommer. In Perspectives in Lattice QCD, World Scientific (2008)
[arXiv:hep-lat/0611020]

[17] M. Lüscher. JHEP 1008 (2010) 071, [arXiv:hep-lat/1006.4518v1]

[18] P. Fritzsch, A. Ramos. JHEP 1310 (2013) 008 [arXiv:1301.4388]

[19] P. Fritzsch et al. Nucl.Phys. B865 (2012) 397-429, [arXiv:1205.5380]

[20] J. Heitger et al. PoS LATTICE2013 (2013) 475, [arXiv:1312.7693]

[21] P. Fritzsch, J. Heitger, and N. Tantalo. JHEP 1008 (2010) 074, [arXiv:1004.3978].

[22] B. Blossier et al. JHEP 1209 (2012) 132, [arXiv:1203.6516]

[23] M. Lüscher, S. Schaefer. JHEP 1107 (2011) 036, [arXiv:1105.4749]

[24] U. Wolff. Comput.Phys.Commun. 156 (2004) 143-153, [arXiv:hep-lat/0306017]

7


