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1. Motivations

Since its introduction non-perturbative computation [1] of Renormalization Constants (RC’s)

has been the preferred choice. Though, since quark bilinears are either finite or logarithmically

divergent, nothing prevents the computation of RC’s in Perturbation Theory (PT). From a practical

point of view difficulties show up. Perturbative computations are affected by truncation errors;

moreover, the perturbative series are badly convergent. In order to deal with these issues we put

forward the computation up to three-loop [2, 3]. Such a computation requires the evaluation of a

huge number of Feynman diagrams, making it in practice impossible. In order to evaluate all the

contribution (order by order) we make use of Numerical Stochastic Perturbation Theory [4].

2. RI′-MOM scheme and logarithmic divergences

In the computation of RC’s we have to deal with logarithmic divergences: while disentangling

logarithmic and finite terms is in principle feasible, this would require a terrific numerical precision.

We make use of an interesting feature of Regulator Independent (RI) renormalization scheme: in a

perturbative computation of lattice RC’s, logarithmic contributions can be inferred from continuum

computations. To this extent we adhere to RI′-MOM scheme, which is one of the most widely

used schemes on the lattice. Making use of continuum results we are able to subtract logarithmic

contributions from our data so that we are only left with the computation of finite parts.

The procedure is the following. Being S(p) the quark propagator and

Zq(µ ,α) =−i
1

12

Tr(/pS−1(p))

p2
|p2=µ2

the definition of quark field RC, we constructs Green functions as expectation values computed on

external quark states at fixed momentum p:

GΓ(p) =
∫

dx〈p| ψ(x)Γψ(x) |p〉.

We compute vertex functions by amputation, project on the tree-level structure

ΓΓ(p) = S−1(p)GΓ(p)S−1(p) OΓ(p) = Tr
(
P̂OΓΓΓ(p)

)

and finally impose the renormalization conditions

ZΓ(µ ,α)Z−1
q (µ ,α)OΓ(p)|p2=µ2 = 1. (2.1)

Next step is the subtraction of logarithms. A typical RC reads (the expansion is in the renormalized

coupling)

Z(µ ,α) = 1+ ∑
n>0

dn(l)α(µ)n dn(l) =
n

∑
i=0

d
(i)
n li l ≡ log(µa)2.

From the definition of anomalous dimension

1

2

d

dl
logZ = γ = ∑

n>0

γnα(µ)n

(where the last equality holds in PT) we can express the d
(i>0)
n in terms of γm<n and the coefficients

of the β function only. Here enters the tricky point: in a RI scheme we can read them from the

continuum computations.
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3. Zero quark mass

Since we are interested in a mass-independent scheme, everything in sec. 2 is defined at zero

quark mass. In perturbation theory this is simple: it only requires to plug the proper counterterms

and doesn’t need any chiral extrapolation (this is an advantage of PT, systematic errors due to chiral

extrapolation are not involved).

Given the inverse quark propagator

Ŝ( p̂, m̂cr,β
−1)−1 = i/̂p+ m̂W ( p̂)− Σ̂( p̂, m̂cr,β

−1)

the critical mass is computed as the zero momentum contribution of the diagonal part of the self-

energy

1

4
Tr Σ̂( p̂, m̂cr,β

−1)
∣∣∣

p̂→0
= m̂cr.

Computing RC’s up to three-loops requires knowledge of two-loop critical mass that in our cases

of interest is analytically known. Since computation of critical mass comes almost for free we used

it as a test (up to two-loop), and we obtained the three-loop values (fig. 1(c)) as a byproduct:

m̂
(3),tls
cr =−3.94(4) m̂

(3),iwa
cr =−0.78(2)

(a) (b) (c)

Figure 1: Critical mass for nf=2 Wilson fermions/tree level Symanzik improved gauge action in function of

the inverse lattice size. One- (a) and two-loop (b) counterterms are already plugged in: this results in zero

critical mass. We obtained three-loop (c) from our computations.

4. Lattice artifacts

As in any lattice computation we expect finite lattice spacing and finite volume effects. The

former vanish in the a → 0 limit, the latter can be expected (on dimensional grounds) to result in

a pL dependance (N = L/a being the lattice size). Since we want to compute the RC’s in both

continuum and infinite volume, we need to take the two limits.

On a fixed volume a → 0 limit can be obtained by computing the quantities for different momenta

p̂ and fitting the results in terms of hypercubic invariants. The possible terms are dictated by the

symmetries of the specific observable.

3
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(a) tree-level Symanzik gauge action/n f =2 Wilson fermion

analytical

one-loop one-loop two-loop three-loop

ZS -0.6893 -0.683(7) -0.777(24) -1.96(14)

ZP -1.1010 -1.098(11) -1.299(38) -3.19(21)

ZV -0.8411 -0.838(6) -0.891(17) -1.870(65)

ZA -0.6352 -0.633(4) -0.611(16) -1.198(57)

(b) Iwasaki gauge action/n f =4 Wilson fermion

analytical

one-loop one-loop two-loop three-loop

ZS -0.4488 -0.442(6) -0.170(11) -0.33(11)

ZP -0.7433 -0.739(7) -0.202(13) -0.58(11)

ZV -0.5623 -0.561(7) -0.067(12) -0.367(61)

ZA -0.4150 -0.419(6) -0.033(12) -0.236(56)

Table 1: One-, two- and three-loop coefficients of the renormalization constants for quark bilinears. Expan-

sions are in β 1. One-loop analytical results are reported for comparison.

By computing the observables on different volumes we can define finite volume corrections ac-

cording to

ÔΓ( p̂, pL,ν) = ÔΓ( p̂,∞,ν)+
(

ÔΓ( p̂, pL,ν)− ÔΓ( p̂,∞,ν)
)

≡ ÔΓ( p̂,∞,ν)+∆ÔΓ( p̂, pL,ν)

≃ ÔΓ( p̂,∞,ν)+∆ÔΓ(pL)

The rationale for the approximation is that we neglect corrections on top of corrections.

All in all, a prototypal fitting form of ours reads

ÔΓ( p̂, pL,ν) = c1 + c2 ∑
σ

p̂2
σ + c3

∑σ p̂4
σ

∑ρ p̂2
ρ

+ c4 p̂2
ν +∆ÔΓ(pL)+O(a4). (4.1)

This approach requires a number of assumptions, therefore the effectiveness of the fit has to be

assessed a posteriori. At one-loop we compared with analytical results; at higher orders we could

assess stability of the procedure changing the order of expansions in p̂, the interval of momenta

considered and the number of different volumes.

5. Results and discussion

Tab. 1 shows the results of the computation. Errors are dominated by the stability of fits with

respect to the change of fitting range, order of hypercubic expansion and number of lattice sizes

simultaneously taken into account. As a confirm of the effectiveness of our method one-loop results

agree with the previous analytical computations within errors. Tab. 1(a) and 1(b) show comparison

with non-perturbative computations [5, 6] provided we sum the series at the proper β value. Quoted

4
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(a) tree-level Symanzik gauge action/n f =2 Wilson fermion

ZV ZA ZS ZP

NSPT 0.710(2)(28) 0.788(2)(18) 0.753(4)(30) 0.601(5)(48)

ETMC(M1) 0.659(4) 0.772(6) 0.645(6) 0.440(6)

ETMC(M2) 0.662(3) 0.758(4) 0.678(4) 0.480(4)

(b) Iwasaki gauge action/n f =4 Wilson fermion

ZV ZA ZS ZP

NSPT 0.677(9)(39) 0.769(9)(25) 0.712(14)(36) 0.538(15)(63)

ETMC(M1) 0.655(03) 0.762(04) 0.649(5) 0.478(2)

ETMC(M2) 0.657(02) 0.752(02) 0.695(3) 0.505(2)

Table 2: Summation of the series at β = 4.05 (tree-level Symanzik) and β = 2.10 (Iwasaki) and comparison

with results from [5] and [6] respectively.

errors are respectively statistical errors and a rough estimate of truncation errors, where the latter

are simply taken as the highest order contribution.

Observe that the truncation errors are quite large. This is due to the fact that the relative weight of

three-loop contribution is large with respect one- and two-loop. We can spot a fair agreement in

the Iwasaki case between perturbative and non-perturbative results even considering the statistical

error only. One the other hand there is a large deviation in the Symanzik case, more manifest in the

divergent quantities. Notice that in the case of divergent quantities the different prescriptions “M1”

and “M2” used in the non-perturbative case for dealing with irrelevant effects give results not in

full agreement.

Before we proceed with the analysis of the summations let’s inspect the behavior of finite lattice

spacing effects. We can assess irrelevant effects by discarding the continuum limit (c1 in 4.1) and

finite size contributions ∆ÔΓ(pL):

Õ
(i)
Γ ( p̂,ν) = c

(i)
2 ∑

σ

p̂2
σ + c

(i)
3

∑σ p̂4
σ

∑ρ p̂2
ρ

+ c
(i)
4 p̂2

ν +O(a4).

The resummed quantity
3

∑
i=1

β−i 1

4

4

∑
ν=1

Õ
(i)
Γ ( p̂,ν)

can be regarded as the irrelevant contributions to ZΓ (2.1). The different impact of (continuum-like)

rotational symmetry in the two cases is shown in fig. 2. Observe that the amount of violation is not

decided by the choice of momenta.

We can try to better understand the convergence proprieties of the series considering expansions in

different couplings. This technique is usually referred to as Boosted Perturbation Theory [7]. We

will consider the following couplings (P is the 1×1 plaquette):

x0 = β−1 x1 =
β−1

√
P

x2 =− 1

P(0)
log(P) x3 =

β−1

P
.

Switching from x0 to x1, x2 and finally to x3 the values of the coupling are getting larger and larger.

A remark before proceeding. We do not have non-perturbative simulations in the same setting we
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(a) tree-level Symanzik gauge

action/n f =2 Wilson fermions

(b) Iwasaki gauge action/n f =4

Wilson fermions

Figure 2: Contribution of irrelevant effects to ZV for the two different actions.

are dealing with. In spite of this we estimate the value of P summing the perturbative expansion

of the plaquette and we take into account the relevant statistical and truncation errors in the final

summation. We will consider only tree level Symanzik case, since Iwasaki results are already in

good agreement.

x0 x1 x2 x3 (M1) (M2)

ZV 0.710(2)(28) 0.686(21) 0.688(17) 0.661(55) 0.659(4) 0.662(3)

ZA 0.788(2)(18) 0.773(12) 0.775(9) 0.763(26) 0.772(6) 0.758(4)

ZS 0.753(4)(30) 0.727(29) 0.726(27) 0.705(49) 0.645(6) 0.678(4)

ZP 0.601(5)(48) 0.558(45) 0.558(41) 0.526(73) 0.440(6) 0.480(4)

Table 3: Quark bilinears RC’s for tree-level Symanzik improved gauge action at β=4.05 summed in different

couplings. Non-perturbative results are reported for comparison.

In tab. 3 we can see that ZV and ZA get closer to the non-perturbative result. The central value

agrees with non-perturbative results, while the error becomes large. Observing fig. 3(a) we can

understand the reason: the series start fluctuating and two- and three-loop basically cancel each

other.

Examining logarithmically divergent currents the situation is different: after the boosting proce-

dure there are still discrepancies between summations and non-perturbative results. Notice that

(fig. 3(b)) using the coupling x3 the series already started reshuffling: we cannot improve the sit-

uation by using a larger coupling. Even though there is of course the possibility that higher order

terms should be included, another issue has to be considered. The different approach “M1” and

“M2” brings to different results. Thus there is the possibility that given the interplay between IR

and UV effects, non-perturbative computations suffer from finite-volume effects.

6. Conclusion

We presented the final results for the computation of RC’s of quark bilinears for the regulariza-

tions defined by nf=2 Wilson fermions/tree level Symanzik improved gauge [2] and nf=4 Wilson

fermions/Iwasaki improved gauge [3]. While there is no constraint on computing finite constants

6
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(a) (b)

Figure 3: Summation of the series at one- (blue circles), two- (red triangles) and three-loop (black dia-

monds) at different couplings (from left to right x0, x1, x2 and x3). At the large coupling x3 series summation

reshuffle.

we are limited in the divergent ones because continuum computations are available at three-loop

order in the RI- MOM scheme.

NSPT provide an independent approach with respect to non-perturbative computations, with dif-

ferent systematic effects. High loop computations can provide a new handle to correct non-

perturbative computations with respect to irrelevant contributions. We proposed a method for the

assessment of finite size effects that can be useful in the non-perturbative case as well.
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