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Most of today’s lattice simulations are performed in the isospin symmetric limit of the light quark
sector. Mass reweighting is a technique to include effects of isospin breaking in the sea quarks
at moderate numerical cost. We will give a summary of our recent results on fine lattices with
light quark masses and will show how light quark masses can beextracted by introducing suitable
tuning conditions for the bare mass parameters.

In general the reweighting factor introduces additional fluctuations and thus increases the statisti-

cal uncertainties. In the case of isospin reweighting this factor is a ratio of fermion determinants.

The stochastic evaluation of the determinants potentiallyleads to stochastic noise in observables.

We show the quark mass and the volume dependence of these fluctuations.
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1. Introduction

Mass Reweighting [1] is an interesting and efficient method to correct and to include effects of
quark masses. It can be used for tuning, e.g. the strange quark massms in a 2+1 simulation or the
isospin splitting in the up-quark massmu and the down-quark massmd. Moreover it can be applied
to understand the mass behavior of observables. For small corrections it is applicable and more
efficient than new simulations. Mass reweighting involves the evaluation of fermion determinants
which can be rewritten by an integral representation. This integral representation can be estimated
by Monte Carlo integration which needs around 100 inversions of the Dirac operator to control the
stochastic noise efficiently.

The reweighting factor enters the measurement of an observable by [2]

〈O〉W =
〈OW〉
〈W〉 = 〈OW̃〉 (1.1)

where the mass reweighting factor fornf flavors of quarks

W =
nf

∏
i=1

detDmnew,i

detDmold,i

(1.2)

is normalized withW̃ =W/〈W〉. Here, the Dirac operator is given by the clover improved Wilson
Dirac operatorDm = D+m. The reweighting factor can be rewritten as a determinant ofa ratio
matrix M with

W =
1

det∏nf

i=1

[

D−1
mnew,i Dmold,i

] =
1

detM
. (1.3)

In general lattice simulations are done in the isospin symmetric limit in the light quark sector by
setting the light quark masses to the average light quark mass mud = 0.5(mu+md). The idea is to
use mass reweighting to introduce isospin breaking. The reweighting is performed by splitting up
the light quark masses by keeping the average quark mass constant 2mud = mu+md = constand it
follows with the mass shift∆mud = md−mu

mu = mud−0.5·∆mud← mud →mud+0.5·∆mud = md. (1.4)

This leads to the isospin reweighting factor

Wiso =
1

det
[

D−1
mu DmudD

−1
md Dmud

] =
1

detMiso
. (1.5)

Now, the determinant of the non–hermitian matrixM can be rewritten by an integral representation
given by

1
detM

=

∫

D[η ]exp{−η†Mη} (1.6)

which holds forλ (M + M†) > 0 [3] and the normalized integral measure is given by D[η ] =

∏n
j=1dx jdy j/π with η j = x j + iy j . The integral eq. (1.6) can be estimated stochastically

1
detM

=
1

Nη

Nη

∑
i=1

e−η†
i (M−I)ηi +O(1/

√

Nη) (1.7)
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Table 1: The table shows the analyzed CLS - ensembles generate withnf = 2 - O(a) improved Wilson
fermions withmud = mu = md [4]. We used ensembles of three different lattice spacingsa with pion masses
mπ from 580 MeV down to 192 MeV and lattice volumeV/a4. The number of configurationsNcn f g are
seperated by MDUs/config withRact the relative number of active links. The maximal reweighting range is
given by the quark mass shift in theMS-scheme∆mR,max. The renormalized mass is defined as in [4].

ID V/a4 a [fm] mπ [MeV] Ncn f g MDUs/config·Ract ∆mR,max [MeV]

A5 64×323 0.076 330 202 20·1 4.43(60)

E4 64×323 0.066 580 100 16·0.37 7.1(17)
D5 48×243 “ 440 503 8·1 5.9(10)
E5 64×323 “ 440 99 160·0.37 6.01(96)
F7 96×643 “ 270 350 16·0.37 5.01(38)
G8 128×643 “ 192 90 8·1 5.86(56)

O7 96×483 0.049 270 98 40·1 5.63(40)

by drawingNη pseudofermion fieldsη distributed via the normalized function∝ exp{−η†η} and
I the unit matrix with dimension ofM. Note for every drawn fieldη nf –inversions of the Wilson
Dirac operatorDmi have to be performed.

In general mass reweighting introduces fluctuations which increase the statistical error. These
fluctuations are the ensemble fluctuations, introduced by the ensemble average in eq. (1.1), and
the stochastic fluctuations, introduced by the stochastic estimation of the integral eq. (1.6). The
fluctuations are given by the variance averaged over the ensemble and the pseudofermionsη . We
will define the variance of the integral representation eq. (1.6) byσ2 = 〈〈ww†〉η〉−〈〈w〉η〉〈〈w†〉η〉
with the stochastic estimatew(U,η)= 1/Nη ∑i exp{−η†

i (M− I)ηi}. By performing theη–average
〈〉η (i.e. all ηi independently) the fluctuations are given for finiteNη by

σ2 =
1

Nη

〈

1
det(M+M†− I)

〉

+
Nη −1

Nη

〈

1
detMM†

〉

−
〈

1
detM

〉〈

1
detM†

〉

(1.8)

which holds forλ (M+M†− I)> 0. The stochastic fluctuations for one configuration are given by
neglecting the ensemble average〈〉 and vanish forNη →∞. Moreover by introducing a mass inter-
polation between the start and the target mass the stochastic fluctuations can be further controlled,
i.e. if no Dirac operator has a zero eigenvalue during the interpolation the conditionλ (M+M†)> 1
can be insured [5]. In this case the number of inversions isNinv ∝ N ·Nη , whereN is the number of
interpolation steps. Note for many reweighting cases it is effecient to use the even-odd precondi-
tioned Wilson–Dirac operator (e.g. see [6]), however we do not find an improvement in the case of
isospin reweighting. The ensemble fluctuations can be tamedby including additional quarks into
the reweighting process, e.g. in the case of isospin reweighting the fluctuations are minimized by
keeping the average quark massmud = 0.5(mu+md) constant during the reweighting.

Here, we will discuss mass reweighting by introducing an isospin breaking in the light quarks.
We will show the scaling of the different fluctuations (ensemble and stochastic) and how the up–
and down–quark mass can be extracted from the analyzed ensembles (see tab. 1).
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Figure 1: The relative stochastic fluctuations of the isospin reweighting factor is shown as a function of the
renormalized quark mass.σ2

st is the average of the stochastic variance estimated usingNη = 6.

2. Isospin Reweighting

The isospin reweighting factor eq. (1.5) can be expanded in∆m2
ud

Wiso =
detDmu detDmd

detD2
mud

= 1+∆m2
udTr(D−2

mud
)+O(∆m4

ud) (2.1)

by using detM = exp{Tr(ln(M))}. The fluctuationsσ2 in eq. (1.8) of the isospin reweighting
factor can be expanded in∆m2

ud. It can be shown that the stochastic fluctuationsσ2
st decouple

from the ensemble fluctuationsσ2
enswith σ2 = σ2

st+σ2
ens. The stochastic fluctuations in the isospin

reweighting case are given by

σ2
st,rel(Ninv) =

〈

σ2
st(Ninv)

W2

〉

=
∆m4

ud

Ninv

〈

Tr
1

(

DmudD
†
mud

)2

〉

+O
(

∆m6
ud

)

. (2.2)

The ensemble fluctuations are

σ2
ens

〈W〉2 = ∆m4
ud var

(

Tr

[

1
D2

mud

])

+O
(

∆m6
ud

)

(2.3)

with the variance var(O) =
〈

O2
〉

− 〈O〉2. Note this is true because the Dirac operator isγ5-
hermitian. Now, the cost can be derived by demanding that thestochastic fluctuations do not

dominate the ensemble fluctuations, e.g. thatσ2
st,rel(Ninv)/σ2

ens
!∼ 0.1.

By using the analyzed ensembles, listed in table 1, it is possible to deduce numerically the
scaling behavior of the fluctuations in the quark mass and thevolume. However in the case of
the stochastic fluctuations the trace of the Wilson Dirac operator is known in chiral perturbation
theory, e.g. as in [7], by〈Tr 1

(DD†)
2 〉 ∝ ΣV

m3
R
. The numerical analysis is consistent with this behavior.

It follows for the stochastic fluctuations (see fig. 1)

σ2
st,rel ≈ kst

∆m4
RV

Ninvmr ′
R

1

r r ′
0

(2.4)
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Figure 2: The scaling of the ensemble fluctuations for different volume behaviors is shown. The left figure
shows the quark mass behavior for a volume behavior of4

√
V and the right figure for a volume behavior of

V3/4.

by using the scaler0 [8] to form dimensionless quantities. By fixing the volume behavior toV
we perform a fit (black, solid) to the quark mass behavior by using the ensembles E4 (green,
triangle), D5 (red, diamond), E5 (black, triangle), A5 (cyan, circle), O7 (magenta, diamond), F7
(blue, square) and G8 (green, star). For each ensemble we computeσ2

st andσ2
ens for two values of

∆m= ∆mmax/2,∆mmax (see tab. 1). The quark mass behavior is given byr ′ = 2.63(5). For the red
lines the quark mass behavior and the volume behavior is fixedto V/m3

q and only ensembles with
pion masses< 340MeV are included. The data show a good agreement with the expectation from
chiral perturbation theory for pion masses< 340MeV.

The leading term of the ensemble fluctuations eq. (2.3) is proportional to var(TrD−2). Numer-
ically we observe a weak volume dependenceVq with q< 1. Similar to the stochastic fluctuations
the ensemble fluctuations can be written as

σ2
ens≈ kens

∆m4
RVq

mr
R

1

r r−4−q
0

. (2.5)

In general the simultaneous deduction of the volume and the quark mass behavior is difficult.
A varied volume behavior changes simultaneously the mass behavior. A good fit is given for a
volume scaling ofq= 0.25 (see left figure 2) which gives a mass behavior ofr = 3.85(13) for all
ensembles (black line) andr = 3.94(31) for ensembles with pion masses< 340MeV (red dashed
line). A weaker volume behavior is also supported by comparison of D5 and E5 ensembles, which
givesq∼ 0.46. However by assuming a similar quark mass behavior as in the case for the stochastic
fluctuations withr = 3 the scaling in the volume is roughly given byq∼ 0.75. In the right figure
2 we fixed the volume behavior toq = 0.75 which gives a mass behavior ofr = 2.83(13) by
including every ensemble (black line) andr = 3.04(31) by including ensembles with pion masses
smaller than< 340MeV (red, dashed line). We conclude that the volume behavior is given by
q≃ 0.25. . .0.75 by a simultaneous variation of the quark mass behavior from r ≃ 4. . .3.

The cost of isospin reweighting can be estimated from the ratio

σ2
st,rel(Ninv)/σ2

ens∼
k′st

k′ens

(Lmπ)
2L

Ninv · r0
with

k′st

k′ens
= 1e−3 (2.6)
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Figure 3: The figures show the average quark massmud (left) and the mass splittingmd−mu plotted versus
R3 after fixingR1 andR2. The masses are renormalized in theMS–scheme at 2GeV.

for q= 0.25 andr = 4. For the G8 ensemble followsNinv ≈ 200 for a ratio of 0.1.

3. Quark Masses

The continuum limit can be performed on a line of constant physics. This line can be defined
by keeping dimensionless ratios of physical quantities constant. These fix the bare mass parameters,
here, a quenched strange quark withms, the isospin mass split∆mud and the average light quark
massmud. We take the ratios

R1 =
0.5(m2

K0 +m2
K±)

(0.5( fK0 + fK±))2 , R2 =
m2

K0−m2
K±

(0.5( fK0 + fK±))2 and R3 =
m2

π±

(0.5( fK0 + fK±))2 (3.1)

with the meson masses, the pionmπ± , the neutral kaonmK0 and the charged kaonmK± and the kaon
decay constantsfK0 and fK± . The physical values of the ratios are taken from [9] and we assume
0.5( fK0 + fK±) = 155 MeV. Now, the strategy is to useR1 to fix ms, which is done in [4] andR2

to fix the isospin splitting∆mud. Afterwards the ratioR3 is used to extrapolate the light quarks
towards the physical limit.

We measure the PCAC mass on the analyzed ensembles (see tab. 1) and convert them into
theMS-renormalization scheme. The dimensionless ratiosR2 andR3 are given in the lowest order
chiral perturbation theory up toO(∆m2

ud,m
2
ud) by R2 =

B
F2 ∆mud(1+Cmud) andR3 =

2B
F2 mud with

constantsB, C andF2. Now, it is possible to perform extrapolations towards the physical point in
the light quark masses. For the average light quark mass thisis shown in the left figure of fig. 3 by
assumingmud(R3) ≈ a1R3. By using the F7 and G8 ensemble the average light quark mass at the
physical point at finite lattice spacing ofa= 0.066 fm is given bymud,R = 3.19(11) MeV. For the
mass split in the light quarks (see right plot in figure 3) we assumed∆mud(R3) ≈ b0+ b1R3. By
using the data of the E5, F7 and G8 ensemble it follows for the mass splitting∆mud= 2.49(10) MeV
at finite lattice spacinga= 0.066 fm.

The isospin effects enter the observable by the isospin reweighting factor which scales propor-
tional to∆m2

ud. In the case of the PCAC mass the statistical error is too big compared to the effect
of the isospin reweighting correction. A determination of this effect is only possible for larger

6
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statistics. Neclecting the sea quark effects proportionalto ∆m2
ud, by setting the isospin reweighting

factor to one, the isospin quark mass split is given by∆mud = 2.52(10) MeV. However the isospin
reweighting effects increases for smaller quark masses andwe want to reduce the statistical error
to figure out the isospin effects for example in the pion mass.In order to perform a continuum limit
the statistics has to be increased and other ensembles have to be included.

4. Conclusion

Isospin mass reweighting needs a moderate numerical effort. The analysis shows that the cost
scales with(LMPS)

2L for a volume scaling of the ensemble fluctuations with4
√

V and is around
200 inversions of the Dirac operator for the G8 ensemble which has a pion mass of 192 MeV at
a volume ofV/a4 = 128×643. By using the introduced dimensionless ratiosR1, R2 andR3 it is
possible to extract the light quark masses. The isospin massspliting is∆mud = 2.49(10) MeV and
the average quark mass ismud,R= 3.19(11) MeV at finite lattice spacing ofa= 0.066 fm. Although
a more careful analysis is needed to extract competitive numbers it shows that the tuning conditions
are suitable to extract the light quark masses. In order to extract continuum physics the statistics
has to be improved and QED-effects have to be included. A software package for mass reweighting
[10] (see also [11]) is publicly available in the framework of the openQCDcode[12].

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) in form of Transre-
gional Collaborative Research Centre 55 (SFB/TRR55).

References

[1] A. Hasenfratz, R. Hoffmann and S. Schaefer, Phys. Rev. D78, 014515 (2008) [arXiv:0805.2369
[hep-lat]].

[2] A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett.61, 2635 (1988).

[3] J. Finkenrath, F. Knechtli and B. Leder, Nucl. Phys. B877, 441 (2013) [Erratum-ibid. B877, 574
(2013)] [arXiv:1306.3962 [hep-lat]].

[4] P. Fritzsch, F. Knechtli, B. Leder, M. Marinkovic, S. Schaefer, R. Sommer and F. Virotta, Nucl. Phys.
B 865, 397 (2012) [arXiv:1205.5380 [hep-lat]].

[5] B. Leder, J. Finkenrath and F. Knechtli, PoS LATTICE2013, 035 (2014) [arXiv:1401.1079 [hep-lat]].

[6] J. Finkenrath, F. Knechtli and B. Leder, PoS LATTICE2012, 190 (2012) [arXiv:1211.1214 [hep-lat]].

[7] L. Giusti and M. Lüscher, JHEP0903, 013 (2009) [arXiv:0812.3638 [hep-lat]].

[8] R. Sommer, Nucl. Phys. B411, 839 (1994) [hep-lat/9310022].

[9] S. Aoki, Y. Aoki, C. Bernard, T. Blum, G. Colangelo, M. Della Morte, S. Dürr and A. X. El Khadraet
al., Eur. Phys. J. C74, no. 9, 2890 (2014) [arXiv:1310.8555 [hep-lat]].

[10] B. Leder and J. Finkenrath, https://github.com/bjoern-leder/mrw

[11] B. Leder and J. Finkenrath, PoS LATTICE2014, 040 (2014)

[12] Martin Lüscher, http://luscher.web.cern.ch/luscher/openQCD

7


