# PROCEEDINGS OF SCIENCE

# Triviality of $\phi_4^4$ in the broken phase revisited

# Tomasz Korzec and Ulli Wolff\*

Humboldt Universitat zu Berlin, Institut fur Physik, Newtonstrasse 15, D-12489 Berlin, Germany E-mail: korzec@physik.hu-berlin.de, uwolff@physik.hu-berlin.de

We define a finite size renormalization scheme for  $\phi^4$  theory which in the thermodynamic limit reduces to the standard scheme used in the broken phase. We use it to re-investigate the question of triviality for the four dimensional infinite bare coupling (Ising) limit. The relevant observables all rely on two-point functions and are very suitable for a precise estimation with the worm algorithm. This contribution updates an earlier publication by analysing a much larger dataset.

The 32nd International Symposium on Lattice Field Theory 23-28 June, 2014 Columbia University New York, NY

#### \*Speaker.



## 1. Summary of theoretical background

This brief article gives an update on [1] in the sense that we here analyze a very much enlarged new data set. This is found in the next section while we here summarize the theory for the reader's convenience<sup>1</sup>.

We consider the single component Z(2) symmetric scalar field theory on a torus of length L embedded in four dimensional Euclidean space. We employ the simplest hypercubic lattice discretization with L/a sites in each direction and the standard nearest neighbor lattice action

$$S = \sum_{x} \left[ \varphi(x)^{2} + \lambda \left( \varphi(x)^{2} - 1 \right)^{2} \right] - 2\kappa \sum_{x\mu} \varphi(x) \varphi(x + \hat{\mu}).$$
(1.1)

The standard picture for this quantum field theory is [3, 4] that there is a critical line  $\kappa_c(\lambda)$  where the model possesses a continuum limit. This limit in  $\kappa$  may be approached from below to reach the symmetric massive continuum theory or (for  $\lambda > 0$ ) from above to define the broken-symmetry massive model. The latter is of particular theorectical interest here due to some similarity to the Higgs field in the standard model.

As a standard way to renormalize the infinite volume theory in the broken phase we may match the Fourier transform G(p) of the two point correlation function

$$G(p) = \sum_{x} e^{-ipx} \langle \varphi(x)\varphi(0) \rangle$$
(1.2)

to the asymptotic form

$$G(p) = Z \left\{ v^2 \delta^4(p) + \frac{1}{\hat{p}^2 + m^2 + \mathcal{O}(\hat{p}^4)} \right\} \quad (p \to 0)$$
(1.3)

in the limit of vanishing p. Here the lattice momenta implied by our discretization

$$\hat{p}_{\mu} = \frac{2}{a} \sin\left(ap_{\mu}/2\right) \tag{1.4}$$

have entered. In this formula v and m are the renormalized vacuum expectation value and the renormalized mass and Z is a multiplicative renormalization factor. We prefer to define v from a zero momentum contribution to the unsubtracted two point function rather than from the direct expectation value  $\langle \varphi \rangle$  because we thus avoid subleties with an otherwise necessary symmetry breaking external field and we prepare the extension of the scheme to a finite size system.

On a finite torus – lattice or continuum – all momentum components get quantized to integer multiples of  $2\pi/L$ . We now focus on three momenta with the smallest mutually differing values of  $p^2$ 

$$p = (0,0,0,0) \tag{1.5}$$

$$p_* = (1,0,0,0)\frac{2\pi}{L} \tag{1.6}$$

$$p_{**} = (1,1,0,0)\frac{2\pi}{L},\tag{1.7}$$

<sup>&</sup>lt;sup>1</sup>A more detailed elementary introduction can be found in [2].

for which we enforce (1.3) as exact equality and then solve for Z, m, v. The result is

$$z^{2} = (mL)^{2} = \frac{G(p_{**})\hat{p}_{**}^{2}L^{2} - G(p_{*})\hat{p}_{*}^{2}L^{2}}{G(p_{*}) - G(p_{**})}$$
(1.8)

and

$$w^{2} = (vL)^{2} = \frac{G(0)}{G(p_{*})} \frac{1}{L^{2}\hat{p}_{*}^{2} + z^{2}} - z^{-2}.$$
(1.9)

where we have introduced the dimensionless finite size scaling quantities z = mL and w = vL. In addition we have substitued

$$\delta^4(p) \to L^4 \delta_{p,0} \tag{1.10}$$

for the finite size system. A renormalized coupling in the broken phase is conveniently defined by the ratio of mass to expectation value,

$$g = \frac{3m^2}{v^2} = \frac{3z^2}{w^2}.$$
 (1.11)

In an expansion around one of the degenerate minima g is seen to coincide with the bare coupling up to loop corrections.

In our numerical investigation we have restricted ourselves to the limit  $\lambda \to \infty$ . Then the path integral over lattice fields  $\varphi$  with weight  $\exp(-S)$  reduces to the Ising model where we sum over cofigurations { $\varphi(x) = \pm 1$  }.

The required observable G(p) can be very conveniently estimated in the loop representation [5] of the Ising model which is efficiently sampled by the worm algorithm [6]. In this ensemble the  $tanh(2\kappa)$  expansion of

$$\mathscr{Z} = \sum_{u,v} \sum_{\varphi} e^{2\kappa \sum_{x,\mu} \varphi(x)\varphi(x+\hat{\mu})} \varphi(u) \varphi(v)$$
(1.12)

is sampled. As a consequence the distribution of u and v is related to the two point correlation,

$$\langle \boldsymbol{\varphi}(\boldsymbol{x}) \, \boldsymbol{\varphi}(0) \rangle = \frac{\langle \langle \delta_{\boldsymbol{x},\boldsymbol{u}-\boldsymbol{v}} \rangle \rangle}{\langle \langle \delta_{\boldsymbol{u},\boldsymbol{v}} \rangle \rangle} \tag{1.13}$$

where double angles refer to the average defined by (1.12). Finally the desired Fourier transforms are given by

$$G(p) = \frac{\langle \langle \mathbf{e}^{-ip(u-\nu)} \rangle \rangle}{\langle \langle \delta_{u,\nu} \rangle \rangle} = \frac{\left\langle \left\langle \prod_{\mu} \cos\left(p_{\mu} \left(u-\nu\right)_{\mu}\right) \right\rangle \right\rangle}{\langle \langle \delta_{u,\nu} \rangle \rangle}$$
(1.14)

where the reflection invariance in each direction is used to get a real representation in terms of cosines only.

### 2. New data

In comparison to [1] we have substantially extended our simulations. In table 1 we compile our complete dataset. Apart from some memory optimizations, our implementation of the worm algorithm is a standard one. The only 4D field that we keep in memory, is the link field that represents a graph of the tanh $(2\kappa)$  expansion. Since it can only assume two values per link, V/2bytes suffice for its storage. Thus even our largest lattices fit comfortably into the memory of a

| L/a | $2\kappa$ | $z^2$      | g          | $\tilde{g} _{z^2=10}$ |
|-----|-----------|------------|------------|-----------------------|
| 8   | 0.1524600 | 10.024(96) | 29.13(30)  | 29.70(26)             |
| 12  | 0.1509920 | 10.008(98) | 24.88(26)  | 25.09(22)             |
| 16  | 0.1504500 | 9.928(80)  | 22.30(19)  | 22.44(16)             |
| 24  | 0.1500460 | 9.974(98)  | 19.65(21)  | 19.70(18)             |
| 32  | 0.1498990 | 9.970(65)  | 17.93(13)  | 17.96(11)             |
| 48  | 0.1497900 | 10.189(53) | 16.121(93) | 16.074(77)            |
| 64  | 0.1497484 | 10.03(11)  | 15.03(18)  | 15.03(15)             |
| 80  | 0.1497294 | 10.10(14)  | 14.36(22)  | 14.34(19)             |
| 160 | 0.1497035 | 10.30(38)  | 12.06(49)  | 12.01(42)             |
|     |           |            |            |                       |

**Table 1:** Simulation results for z and g at growing L/a and for  $\tilde{g}$  corrected to refer to  $z^2 = 10$ .

standard desktop PC. It took roughly 43k core hours to generate our most expensive (L/a = 160) ensemble. This corresponds to  $1.2 \times 10^7 \times V$  worm updates.

The coupling  $\tilde{g}$  is related to the renormalized coupling g by

$$\tilde{g} = g \frac{1}{(1 - a^2 m^2 / 16)^2},\tag{2.1}$$

i. e. it only differs by a small lattice artefact. The rationale [1] is that the Callan Symanzik  $\beta$  function for g has a tree level artefact contribution which is absent for  $\tilde{g}$ . For our  $z^2 = 10$  data this amounts to a relative  $1.25L^{-2}$  correction that is completely insignificant except for the smallest lattices.



**Figure 1:** Data and linear fit for  $g^{-2}dg/dz$ .

We had to tune  $\kappa$  to approach  $z^2 = 10$ . Table 1 shows that we were often successful within our small statistical errors. To implement the remaining tiny correction leading to the last column we

have numerically determined the derivative  $dg/d(z^2)$ . This is relatively easy by using the relation

$$t\frac{d}{dt}\langle\langle A\rangle\rangle = \langle\langle AK\rangle\rangle - \langle\langle A\rangle\rangle\langle\langle K\rangle\rangle$$
(2.2)

which holds in the loop representation [5]. In this formula  $t \equiv \tanh(2\kappa)$  is used, A can be any  $\kappa$ -independent observable and K is the total number of links occupied by lines. We see in figure 1 that beyond L = 64 the connected correlation (2.2) is too noisy to get a signal and we had to extrapolate with the shown linear fit. Its form is suggested by perturbation theory. We emphasize however that any error in this procedure only affects a systematic correction in the final results that itself is only of the order of the statistical error.



Figure 2: Cutoff dependence of the coupling  $\tilde{g}$ .

Our main result is now represented by figure 2. The curves show the evolution with the perturbative renormalization group at 1,2 and 3 loop<sup>2</sup> precision where the evolution is started (in both directions) from our most precise data point at L/a = 48. The shaded bands represent the small error of the initial value. We see a perfect match of *all our data points* with the three loop evolution and thus complete consistency with the (logarithmic) triviality scenario.

<sup>&</sup>lt;sup>2</sup>We have to note that the three loop term is taken from [4] and refers to  $z = \infty$ . According to experiences in the symmetric phase [7] the value for  $z^2 = 10$  is expected to be very similar.

Acknowledgements: We thank Peter Weisz for discussions and the Deutsche Forschungsgemeinschaft (DFG) for support in the framework of SFB Transregio 9.

#### References

- [1] Johannes Siefert and Ulli Wolff, *Triviality of*  $\phi_4^4$  *theory in a finite volume scheme adapted to the broken phase*, Phys. Lett. B **733** (2014) 11 [arXiv:1403.2570 [hep-lat]].
- [2] Ulli Wolff Triviality of four dimensional  $\phi^4$  theory on the lattice, (2014) Scholarpedia, 9(10):7367.
- [3] M. Lüscher and P. Weisz, Scaling Laws and Triviality Bounds in the Lattice phi\*\*4 Theory. 1. One Component Model in the Symmetric Phase, Nucl. Phys. **B290** (1987) 25.
- [4] M. Lüscher and P. Weisz, Scaling Laws and Triviality Bounds in the Lattice phi\*\*4 Theory. 2. One Component Model in the Phase with Spontaneous Symmetry Breaking, Nucl. Phys. B295 (1988) 65.
- [5] U. Wolff, Simulating the All-Order Strong Coupling Expansion I: Ising Model Demo, Nucl. Phys. B810 (2009) 491, [arXiv:0808.3934].
- [6] N. Prokof'ev and B. Svistunov, Worm Algorithms for Classical Statistical Models, Phys. Rev. Lett. 87 (2001) 160601, [arXiv:0910.1393].
- [7] P. Weisz and U. Wolff, *Triviality of φ*<sup>4</sup><sub>4</sub> theory: small volume expansion and new data, Nucl. Phys. B846 (2011) 316–337, [arXiv:1012.0404].