Triviality of ϕ_{4}^{4} in the broken phase revisited

Tomasz Korzec and Ulli Wolff*

Humboldt Universitat zu Berlin, Institut fur Physik, Newtonstrasse 15, D-12489 Berlin, Germany
E-mail: korzec@physik.hu-berlin.de, uwolff@physik.hu-berlin.de

We define a finite size renormalization scheme for ϕ^{4} theory which in the thermodynamic limit reduces to the standard scheme used in the broken phase. We use it to re-investigate the question of triviality for the four dimensional infinite bare coupling (Ising) limit. The relevant observables all rely on two-point functions and are very suitable for a precise estimation with the worm algorithm. This contribution updates an earlier publication by analysing a much larger dataset.

The 32nd International Symposium on Lattice Field Theory
23-28 June, 2014
Columbia University New York, NY

[^0]
1. Summary of theoretical background

This brief article gives an update on [1] in the sense that we here analyze a very much enlarged new data set. This is found in the next section while we here summarize the theory for the reader's convenience ${ }^{1}$.

We consider the single component $\mathbf{Z}(2)$ symmetric scalar field theory on a torus of length L embedded in four dimensional Euclidean space. We employ the simplest hypercubic lattice discretization with L / a sites in each direction and the standard nearest neighbor lattice action

$$
\begin{equation*}
S=\sum_{x}\left[\varphi(x)^{2}+\lambda\left(\varphi(x)^{2}-1\right)^{2}\right]-2 \kappa \sum_{x \mu} \varphi(x) \varphi(x+\hat{\mu}) . \tag{1.1}
\end{equation*}
$$

The standard picture for this quantum field theory is [3, 4] that there is a critical line $\kappa_{c}(\lambda)$ where the model possesses a continuum limit. This limit in κ may be approached from below to reach the symmetric massive continuum theory or (for $\lambda>0$) from above to define the brokensymmetry massive model. The latter is of particular theorectical interest here due to some similarity to the Higgs field in the standard model.

As a standard way to renormalize the infinite volume theory in the broken phase we may match the Fourier transform $G(p)$ of the two point correlation function

$$
\begin{equation*}
G(p)=\sum_{x} \mathrm{e}^{-i p x}\langle\varphi(x) \varphi(0)\rangle \tag{1.2}
\end{equation*}
$$

to the asymptotic form

$$
\begin{equation*}
G(p)=Z\left\{v^{2} \delta^{4}(p)+\frac{1}{\hat{p}^{2}+m^{2}+\mathrm{O}\left(\hat{p}^{4}\right)}\right\} \quad(p \rightarrow 0) \tag{1.3}
\end{equation*}
$$

in the limit of vanishing p. Here the lattice momenta implied by our discretization

$$
\begin{equation*}
\hat{p}_{\mu}=\frac{2}{a} \sin \left(a p_{\mu} / 2\right) \tag{1.4}
\end{equation*}
$$

have entered. In this formula v and m are the renormalized vacuum expectation value and the renormalized mass and Z is a multiplicative renormalization factor. We prefer to define v from a zero momentum contribution to the unsubtracted two point function rather than from the direct expectation value $\langle\varphi\rangle$ because we thus avoid subleties with an otherwise necessary symmetry breaking external field and we prepare the extension of the scheme to a finite size system.

On a finite torus - lattice or continuum - all momentum components get quantized to integer multiples of $2 \pi / L$. We now focus on three momenta with the smallest mutually differing values of p^{2}

$$
\begin{align*}
p & =(0,0,0,0) \tag{1.5}\\
p_{*} & =(1,0,0,0) \frac{2 \pi}{L} \tag{1.6}\\
p_{* *} & =(1,1,0,0) \frac{2 \pi}{L} \tag{1.7}
\end{align*}
$$

[^1]for which we enforce (1.3) as exact equality and then solve for Z, m, v. The result is
\[

$$
\begin{equation*}
z^{2}=(m L)^{2}=\frac{G\left(p_{* *}\right) \hat{p}_{* *}^{2} L^{2}-G\left(p_{*}\right) \hat{p}_{*}^{2} L^{2}}{G\left(p_{*}\right)-G\left(p_{* *}\right)} \tag{1.8}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
w^{2}=(v L)^{2}=\frac{G(0)}{G\left(p_{*}\right)} \frac{1}{L^{2} \hat{p}_{*}^{2}+z^{2}}-z^{-2} \tag{1.9}
\end{equation*}
$$

where we have introduced the dimensionless finite size scaling quantities $z=m L$ and $w=v L$. In addition we have substitued

$$
\begin{equation*}
\delta^{4}(p) \rightarrow L^{4} \delta_{p, 0} \tag{1.10}
\end{equation*}
$$

for the finite size system. A renormalized coupling in the broken phase is conveniently defined by the ratio of mass to expectation value,

$$
\begin{equation*}
g=\frac{3 m^{2}}{v^{2}}=\frac{3 z^{2}}{w^{2}} \tag{1.11}
\end{equation*}
$$

In an expansion around one of the degenerate minima g is seen to coincide with the bare coupling up to loop corrections.

In our numerical investigation we have restricted ourselves to the limit $\lambda \rightarrow \infty$. Then the path integral over lattice fields φ with weight $\exp (-S)$ reduces to the Ising model where we sum over cofigurations $\{\varphi(x)= \pm 1\}$.

The required observable $G(p)$ can be very conveniently estimated in the loop representation [5] of the Ising model which is efficiently sampled by the worm algorithm [6]. In this ensemble the $\tanh (2 \kappa)$ expansion of

$$
\begin{equation*}
\mathscr{Z}=\sum_{u, v} \sum_{\varphi} \mathrm{e}^{2 \kappa \sum_{x, \mu} \varphi(x) \varphi(x+\hat{\mu})} \varphi(u) \varphi(v) \tag{1.12}
\end{equation*}
$$

is sampled. As a consequence the distribution of u and v is related to the two point correlation,

$$
\begin{equation*}
\langle\varphi(x) \varphi(0)\rangle=\frac{\left\langle\left\langle\delta_{x, u-v}\right\rangle\right\rangle}{\left\langle\left\langle\delta_{u, v}\right\rangle\right\rangle} \tag{1.13}
\end{equation*}
$$

where double angles refer to the average defined by (1.12). Finally the desired Fourier transforms are given by

$$
\begin{equation*}
G(p)=\frac{\left\langle\left\langle\mathrm{e}^{-i p(u-v)}\right\rangle\right\rangle}{\left\langle\left\langle\delta_{u, v}\right\rangle\right\rangle}=\frac{\left\langle\left\langle\prod_{\mu} \cos \left(p_{\mu}(u-v)_{\mu}\right)\right\rangle\right\rangle}{\left\langle\left\langle\delta_{u, v}\right\rangle\right\rangle} \tag{1.14}
\end{equation*}
$$

where the reflection invariance in each direction is used to get a real representation in terms of cosines only.

2. New data

In comparison to [1] we have substantially extended our simulations. In table 1 we compile our complete dataset. Apart from some memory optimizations, our implementation of the worm algorithm is a standard one. The only 4D field that we keep in memory, is the link field that represents a graph of the $\tanh (2 \kappa)$ expansion. Since it can only assume two values per link, $V / 2$ bytes suffice for its storage. Thus even our largest lattices fit comfortably into the memory of a

L / a	2κ	z^{2}	g	$\left.\tilde{g}\right\|_{z^{2}=10}$
8	0.1524600	$10.024(96)$	$29.13(30)$	$29.70(26)$
12	0.1509920	$10.008(98)$	$24.88(26)$	$25.09(22)$
16	0.1504500	$9.928(80)$	$22.30(19)$	$22.44(16)$
24	0.1500460	$9.974(98)$	$19.65(21)$	$19.70(18)$
32	0.1498990	$9.970(65)$	$17.93(13)$	$17.96(11)$
48	0.1497900	$10.189(53)$	$16.121(93)$	$16.074(77)$
64	0.1497484	$10.03(11)$	$15.03(18)$	$15.03(15)$
80	0.1497294	$10.10(14)$	$14.36(22)$	$14.34(19)$
160	0.1497035	$10.30(38)$	$12.06(49)$	$12.01(42)$

Table 1: Simulation results for z and g at growing L / a and for \tilde{g} corrected to refer to $z^{2}=10$.
standard desktop PC. It took roughly 43 k core hours to generate our most expensive ($L / a=160$) ensemble. This corresponds to $1.2 \times 10^{7} \times V$ worm updates.

The coupling \tilde{g} is related to the renormalized coupling g by

$$
\begin{equation*}
\tilde{g}=g \frac{1}{\left(1-a^{2} m^{2} / 16\right)^{2}} \tag{2.1}
\end{equation*}
$$

i. e. it only differs by a small lattice artefact. The rationale [1] is that the Callan Symanzik β function for g has a tree level artefact contribution which is absent for \tilde{g}. For our $z^{2}=10$ data this amounts to a relative $1.25 L^{-2}$ correction that is completely insignificant except for the smallest lattices.

Figure 1: Data and linear fit for $g^{-2} d g / d z$.

We had to tune κ to approach $z^{2}=10$. Table 1 shows that we were often successful within our small statistical errors. To implement the remaining tiny correction leading to the last column we
have numerically determined the derivative $d g / d\left(z^{2}\right)$. This is relatively easy by using the relation

$$
\begin{equation*}
t \frac{d}{d t}\langle\langle A\rangle\rangle=\langle\langle A K\rangle\rangle-\langle\langle A\rangle\rangle\langle\langle K\rangle\rangle \tag{2.2}
\end{equation*}
$$

which holds in the loop representation [5]. In this formula $t \equiv \tanh (2 \kappa)$ is used, A can be any κ-independent observable and K is the total number of links occupied by lines. We see in figure 1 that beyond $L=64$ the connected correlation (2.2) is too noisy to get a signal and we had to extrapolate with the shown linear fit. Its form is suggested by perturbation theory. We emphasize however that any error in this procedure only affects a systematic correction in the final results that itself is only of the order of the statistical error.

Figure 2: Cutoff dependence of the coupling \tilde{g}.
Our main result is now represented by figure 2. The curves show the evolution with the perturbative renormalization group at 1,2 and 3 loop 2 precision where the evolution is started (in both directions) from our most precise data point at $L / a=48$. The shaded bands represent the small error of the initial value. We see a perfect match of all our data points with the three loop evolution and thus complete consistency with the (logarithmic) triviality scenario.

[^2]Acknowledgements: We thank Peter Weisz for discussions and the Deutsche Forschungsgemeinschaft (DFG) for support in the framework of SFB Transregio 9.

References

[1] Johannes Siefert and Ulli Wolff, Triviality of ϕ_{4}^{4} theory in a finite volume scheme adapted to the broken phase, Phys. Lett. B 733 (2014) 11 [arXiv:1403.2570 [hep-lat]].
[2] Ulli Wolff Triviality of four dimensional ϕ^{4} theory on the lattice, (2014) Scholarpedia, 9(10):7367.
[3] M. Lüscher and P. Weisz, Scaling Laws and Triviality Bounds in the Lattice phi**4 Theory. 1. One Component Model in the Symmetric Phase, Nucl. Phys. B290 (1987) 25.
[4] M. Lüscher and P. Weisz, Scaling Laws and Triviality Bounds in the Lattice phi**4 Theory. 2. One Component Model in the Phase with Spontaneous Symmetry Breaking, Nucl.Phys. B295 (1988) 65.
[5] U. Wolff, Simulating the All-Order Strong Coupling Expansion I: Ising Model Demo, Nucl. Phys. B810 (2009) 491, [arXiv:0808.3934].
[6] N. Prokof'ev and B. Svistunov, Worm Algorithms for Classical Statistical Models, Phys. Rev. Lett. 87 (2001) 160601, [arXiv:0910.1393].
[7] P. Weisz and U. Wolff, Triviality of ϕ_{4}^{4} theory: small volume expansion and new data, Nucl. Phys. B846 (2011) 316-337, [arXiv:1012.0404].

[^0]: *Speaker.

[^1]: ${ }^{1}$ A more detailed elementary introduction can be found in [2].

[^2]: ${ }^{2} \mathrm{We}$ have to note that the three loop term is taken from [4] and refers to $z=\infty$. According to experiences in the symmetric phase [7] the value for $z^{2}=10$ is expected to be very similar.

