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The fermion bag is a powerful idea that helps to solve fermionlattice field theories using Monte

Carlo methods. Some sign problems that had remained unsolved earlier can be solved within this

framework. In this work we argue that the fermion bag also gives insight into a new mechanism of

fermion mass generation, especially at strong couplings where fermion masses are related to the

fermion bag size. On the other hand, chiral condensates arise due to zero modes in the Dirac op-

erator within a fermion bag. Although in traditional four-fermion models the two quantities seem

to be related, we show that they can be decoupled. While fermion bags become small at strong

couplings, the ability of zero modes of the Dirac operator within fermion bags to produce a chiral

condensate, can be suppressed by the presence of additionalzero modes from other fermions.

Thus, fermions can become massive even without a chiral condensate. This new mechanism of

mass generation was discovered long ago in lattice field theory, but has remained unappreciated.

Recent work suggests that it may be of interest even in continuum quantum field theory.
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1. Introduction

One of the traditional paradigms of fermion mass generation in quantum field theory is spon-
taneous symmetry breaking. Perturbatively, fermion masses arise from local fermion bilinear terms
in the action. In theories where symmetries forbid such terms, fermions can stillbecome massive
through spontaneous breaking of such symmetries. The symmetry breakingthen manifests itself
through a fermion bilinear condensate which we denote generically as〈ψψ〉 6= 0. Can fermions
become massive if some symmetry, which forbids fermion bilinear expectation values, remains
unbroken?

Anomaly matching severely constrains the chiral symmetries that can be preserved when
fermions become massive [1]. The full chiral symmetry group of free fermions needs to be bro-
ken either explicitly or spontaneously for fermions to become massive. However, chiral symmetry
subgroups can remain unbroken, which forbid fermion bilinear condensates yet allow fermions to
become massive. Such exotic mechanisms of fermion mass generation have appeared in the litera-
ture in the context of QCD like theories [2, 3] and more recently in condensed matter physics [4].
In these examples the breaking of chiral symmetry that allows fermion to becomemassive, occurs
through the appearance of four-fermion condensates.

Consider four-fermion field theories where interactions naturally generate the necessary four-
fermion condensates that allow fermions to become massive, but still contain symmetries which
forbid fermion bilinear condensates. In such theories there is no need for any further symmetry
breaking for fermions to become massive. However, since four-fermioninteractions are irrelevant
perturbatively in three or more dimensions, there will still be a massless fermionphase at weak cou-
plings. But at strong couplings, there can be a phase transition to a phasewhere fermions become
massive without any spontaneous symmetry breaking. The strong couplingphase resembles the
well known massive parity doubled phase [5]. Strictly speaking there is nolocal symmetry order
parameter that distinguishes the two phases, although the four-fermion condensate is dramatically
different in the two phases. Recently it has been argued that topologicalorder plays an important
role in distinguishing the two phases [4].

The exotic massive fermion phase is realized in a simple four-fermion field theory with two
flavors of staggered fermions within the so called strong paramagnetic or PMS phase [6, 7]. In this
work we show that the fermion bag approach sheds light on the mechanism through which such
a phase is realized. We contrast two models both of which become massive atstrong couplings.
However, one allows the formation of a non-zero chiral condensate whilethe other forbids it.

2. Model and Symmetries

The two models we study are simple four-fermion models constructed with staggered fermions.
The first model (Model 1) is made with a single flavor of staggered fermionsbut with a nearest
neighbor interaction whose Euclidean action is given by

S = ∑
x,y

ψx Mx,y ψy −U ∑
〈xy〉

{

ψxψx ψyψy

}

(2.1)

whereMx,y is the free staggered fermion matrix. In addition to the usual space-time symmetries, the
action is invariant under anSU(2)×U(1) subgroup of the full continuum chiral symmetry group.
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Under this subgroup the staggered fermion fields on even sites and odd sites transform as






ψx

ψx






→V eiθ







ψx

ψx






and







ψx

ψx






→V ∗ e−iθ







ψx

ψx






, (2.2)

respectively. Note that the on-site chiral condensateψxψx in not invariant under theU(1) symme-
try and hence cannot acquire a non-zero expectation value unless the symmetry is spontaneously
broken.

The second model (Model 2) is made with two flavors of staggered fermionswith an onsite
interaction whose Euclidean action is given by

S = ∑
x,y

{

ψ1
x Mx,y ψ1

y +ψ2
x Mx,y ψ2

y

}

− U ∑
x

ψ1
x ψ1

x ψ2
x ψ2

x . (2.3)

This action is also invariant under the usual space-time symmetries. In additionit is also invariant
under anSU(4) subgroup of the continuum chiral symmetry group. Under this subgroup,the
staggered fermion fields at even sites and odd sites transform as


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


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
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






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






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

and
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x
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


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→V ∗




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








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ψ1
x

ψ1
x

ψ2
x

ψ2
x

























, (2.4)

respectively. In this model, the six onsite fermion bilinear condensates,ψx,1ψx,1, ψx,2ψx,2, ψx,1ψx,2,
ψx,2ψx,1, ψx,1ψx,2, ψx,2ψx,1, transform as a sextet ofSU(4) and hence again are forbidden to acquire
a non-zero expectation value unless theSU(4) symmetry is spontaneously broken.

3. The Fermion Bag Approach

Fermion bags provide a new approach to write partition functions of lattice fermion field the-
ories. In particular, there is no need to introduce auxiliary fields in four-fermion models. The
weak coupling diagrammatic Monte Carlo methods for fermion systems developedrecently, can
be viewed as a subset of the fermion bag approach. A recent review can be found in [8]. Although
the fermion bag approach was introduced as a new way to perform Monte Carlo calculations, here
we show that it also gives new theoretical insight into the mechanism of fermion mass generation
in the two models discussed above. Using fermion bags we will argue that at sufficiently large
couplings, a chiral condensate can form in Model 1 but not in Model 2,although fermions in both
models become massive.

In the fermion bag approach, the partition function of Model 1 can be writtenas

Z = ∑
[b]

UNB ∏
B

Det(WB) (3.1)
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Figure 1: Examples of fermion bag configurations in Model 1 (left) and Model 2 (right). Fermion bags are
defined as the connected set of sites which do not belong to either a bond (left) or a monomer (right).WB is
the Dirac matrix associated with the bag.

where[b] is a bond configuration (see Fig.1 on the left) andNB is the number of bonds. Fermions
can hop freely on sites that do not contain bonds. A connected region ofsuch free sites forms a
fermion bag denoted byB. Fermion bags are determined uniquely in a given configuration[b] and
there can be many fermion bags. The matrixWB is the Dirac matrix associated with the bagB and
is obtained from the staggered fermion matrixM by restricting it to sites within the bag. Similarly,
the partition function of Model 2 can be written as

Z = ∑
[n]

UNm ∏
B

{

Det(WB)
}2

(3.2)

where[n] is a monomer configuration (see Fig. 1 on the right) andNm is the number of monomers.
The definition of fermion bagsB and matrixWB is the same as above, except that monomers
replace bonds. The presence of two flavors is the reason for the square of the determinant in (3.2).

An important property ofWB is that it is anti-symmetric with non-zero matrix elements only
between even and odd sites of the bag. Hence, in a bag which does not contain an equal number of
even and odd sites,WB will have zero modes. We can introduce the concept of “topology” of a bag
by defining its topological charge asν = ne − no, wherene (no) is the number of even (odd) sites
in the bag. ThenWB will have |ν | zero modes for topological reasons, very similar to the index
theorem in the continuum. An example of aν = 1 topological fermion bag is shown in Fig. 2.

4. Fermion Mass

Fermion masses are computed through the exponential decay of fermion two point correlation
functions, defined through the relation

〈

ψx,1 ψy,1

〉

=
1
Z ∑

[n]

GB′(x,y) UNm ∏
B

{

Det(WB)
}2
, (4.1)

in Model 2. Here the sum is only over those configurations[n] where bothx andy belong to the
same bagB′ and the fermion propagatorGB′(x,y) is obtained by computing the appropriate matrix
element of(WB′)−1. A similar relation exists in Model 1.
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x
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Figure 2: An example of aν = 1 topological
fermion bag. Since it contains the sitex it is la-
belled asBx. WBx will have one zero mode. Such
topological bags contribute to the chiral condensate
in Model 1, but not in Model 2.

Figure 3: . Fermion two point correlation functions
get contribution from points within the fermion bag.
ξB is defined as the largest distance between two
points in the fermion bag.

If ξB is defined as the largest possible distance between any two points within a bag(see
Fig. 3) then the fermion mass (in lattice units) must be greater than or equal to the“typical” values
of 1/ξB in fermion bags sampled during the Monte Carlo calculation. In other words, the “typical”
fermion bag size determines the fermion mass. At strong couplings when fermion bags are small,
fermions become massive.

5. Chiral Condensate

Traditionally we expect a non-zero fermion mass to exist only in the presence of a chiral
condensate, i.e.,〈ψψ〉 6= 0. As we will see below, this is not necessary. The chiral condensate
can be computed using the large distance behavior of the two point bosonic correlation function
through the relation

lim
|x−y|→∞

〈ψxψx ψyψy〉= 〈ψψ〉2. (5.1)

In the fermion bag approach the bosonic correlation function can get contributions from a con-
nected and a disconnected component. In the connected component bothx andy belong to the
same bag, while in the disconnected componentx andy belong to different bags. In Model 1 these
two components are given by

〈

ψxψx ψyψy

〉

Conn
=

1
Z ∑

[b]

{

UNB Det(WBx,y([x,y])) ∏
B 6=Bx,y

{

Det(WB)
}

}

(5.2)

〈

ψxψx ψyψy

〉

Disc
=

1
Z ∑

[b]

{

UNBDet(WBx([x])) Det(WBy([y])) ∏
B 6=Bx,By

{

Det(WB)
}

}

.(5.3)
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Figure 4: Plots showing the susceptibility as a function of lattice size for Model 1 atU = 0.8 (left) and
Model 2 at different values ofU (right). In Model 1 we distinguish between the full and the connected
component of the susceptibility.

In the above expressionsBx,y stands for the fermion bag that contains both the sitesx andy, Bx

is the bag that containsx but not y, similarly By is the bag that containsy but not x. Further,
WBx,y([x,y]) is the fermion bag Dirac matrix with sitesx andy removed, similarlyWBx([x]) is the
fermion bag Dirac matrix with the sitex dropped and similarlyWBy([y]) is the matrix with the site
y dropped. The connected and disconnected components in Model 2 are given by

〈

ψ1
x ψ1

x ψ1
y ψ1

y

〉

Conn
=

1
Z ∑

[n]

{

UNm Det(WBx,y([x,y])) Det(WBx,y) ∏
B 6=Bx,y

{

Det(WB)
}2

}

(5.4)

〈

ψ1
x ψ1

x ψ1
y ψ1

y

〉

Disc
=

1
Z ∑

[n]

{

UNm Det(WBx([x])) Det(WBx) Det(WBy([y])) Det(WBy)

× ∏
B 6=Bx,By

{

Det(WB)
}2

}

. (5.5)

Since at strong couplings large bags are exponentially suppressed, theconnected component of the
two point correlation function (5.1) will decay exponentially. Hence, the condensate can only form
if the disconnected component can contribute to the correlation function, especially whenx andy
are located in two different fermion bags far from each other.

It is easy to argue that in Model 1, the disconnected component (5.3) is non-zero due to the
existence ofν =±1 fermion bags in which Det(WBx([x])) 6= 0 although Det(WBx) = 0 (see Fig. 2).
The feature of the zero mode that it contributes to the condensate, but notto the partition function
is well known in the continuum [9]. In contrast, in Model 2 the right hand side of (5.5) exactly
vanishes sinceν = ±1 bags satisfy the identity Det(WBx([x])) Det(WBx) = 0. In other words, if
the zero mode from one flavor tries to contribute to the condensate, the same zero mode present
in the other flavor forbids it. Since the disconnected part cannot contribute, at sufficiently strong
couplings the chiral condensate vanishes in Model 2 although fermions are massive.
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6. Numerical Results

The discussion presented above is valid at largeU To understand how large is large enough,
we have computed the full susceptibility and its connected component defined as

χ(L) =
1
L3 ∑

x,y

〈

ψxψx ψyψy

〉

, χConn(L) =
1
L3 ∑

x,y

〈

ψxψx ψyψy

〉

Conn
. (6.1)

In the previous section we predicted that these two quantities behave differently at largeU in Model
1. While the full susceptibility should diverge with the volume, the connected component should
saturate. In Fig. 4 we show that this is observed even atU = 0.8. The transition to the massless
phase occurs atUc = 0.26. Similarly, we predicted that in Model 2 that the full susceptibility will
saturate at large couplings. Fig. 4 shows that this occurs even atU = 1.2. In this case the transition
to the massless phase occurs atU = 0.96 whereχ(L) diverges due to the presence of a second order
transition.

7. Conclusions

The fermion bag approach sheds light on a new mechanism of fermion mass generation. While
the fermion mass is related to the fermion bag size, the chiral condensate arises due to special topo-
logical fermion bags in which the Dirac operator has zero modes. There are interesting lattice
fermion models where typical fermion bags are small and topological bags are highly suppressed.
In such models, fermions become massive without the formation of a chiral condensate. Recent re-
sults suggest that this exotic fermion mass generation mechanism could be of interest in continuum
quantum field theory [10].
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