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The fermion bag is a powerful idea that helps to solve ferntattice field theories using Monte
Carlo methods. Some sign problems that had remained umselréer can be solved within this
framework. In this work we argue that the fermion bag alseginsight into a new mechanism of
fermion mass generation, especially at strong couplinggsr@vfermion masses are related to the
fermion bag size. On the other hand, chiral condensates dwis to zero modes in the Dirac op-
erator within a fermion bag. Although in traditional fowerfnion models the two quantities seem
to be related, we show that they can be decoupled. While ferivégs become small at strong
couplings, the ability of zero modes of the Dirac operatdhimifermion bags to produce a chiral
condensate, can be suppressed by the presence of addit@panodes from other fermions.
Thus, fermions can become massive even without a chiralestsade. This new mechanism of
mass generation was discovered long ago in lattice fieldyhbat has remained unappreciated.
Recent work suggests that it may be of interest even in camtmquantum field theory.
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1. Introduction

One of the traditional paradigms of fermion mass generation in quantum fieldisespon-
taneous symmetry breaking. Perturbatively, fermion masses arise frahfidamion bilinear terms
in the action. In theories where symmetries forbid such terms, fermions capestime massive
through spontaneous breaking of such symmetries. The symmetry breagmgnanifests itself
through a fermion bilinear condensate which we denote genericalflggs # 0. Can fermions
become massive if some symmetry, which forbids fermion bilinear expectatloesyaemains
unbroken?

Anomaly matching severely constrains the chiral symmetries that can bevaesehen
fermions become massive [1]. The full chiral symmetry group of fremi@ns needs to be bro-
ken either explicitly or spontaneously for fermions to become massive. ¥owehiral symmetry
subgroups can remain unbroken, which forbid fermion bilinear coradesyet allow fermions to
become massive. Such exotic mechanisms of fermion mass generation pesesgjdn the litera-
ture in the context of QCD like theories [2, 3] and more recently in condensster physics [4].
In these examples the breaking of chiral symmetry that allows fermion to ber@assve, occurs
through the appearance of four-fermion condensates.

Consider four-fermion field theories where interactions naturally géména necessary four-
fermion condensates that allow fermions to become massive, but still cogtamegtries which
forbid fermion bilinear condensates. In such theories there is no neehyofurther symmetry
breaking for fermions to become massive. However, since four-fermteractions are irrelevant
perturbatively in three or more dimensions, there will still be a massless fephase at weak cou-
plings. But at strong couplings, there can be a phase transition to awhase fermions become
massive without any spontaneous symmetry breaking. The strong copblasg resembles the
well known massive parity doubled phase [5]. Strictly speaking there Isga symmetry order
parameter that distinguishes the two phases, although the four-fermidarsate is dramatically
different in the two phases. Recently it has been argued that topolagd=i plays an important
role in distinguishing the two phases [4].

The exotic massive fermion phase is realized in a simple four-fermion fielaythath two
flavors of staggered fermions within the so called strong paramagnetic 8rdPislse [6, 7]. In this
work we show that the fermion bag approach sheds light on the mecharmisaglthwhich such
a phase is realized. We contrast two models both of which become massiveraf couplings.
However, one allows the formation of a non-zero chiral condensate tigilether forbids it.

2. Model and Symmetries

The two models we study are simple four-fermion models constructed with stabfgemions.
The first model (Model 1) is made with a single flavor of staggered fermbomsvith a nearest
neighbor interaction whose Euclidean action is given by

S= 3 UMy 4=V %}{wxwx By} (2.1)

whereMyy is the free staggered fermion matrix. In addition to the usual space-time synsnttee
action is invariant under a8J (2) x U (1) subgroup of the full continuum chiral symmetry group.
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Under this subgroup the staggered fermion fields on even sites and alttaitsform as
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respectively. Note that the on-site chiral condengagg, in not invariant under the) (1) symme-
try and hence cannot acquire a non-zero expectation value unlesgiheetry is spontaneously
broken.

The second model (Model 2) is made with two flavors of staggered fermighsan onsite
interaction whose Euclidean action is given by

, (2.2)

S= 3 {WMy i + My e — U GRu g2y (2.3)
Xy X

This action is also invariant under the usual space-time symmetries. In adtis@iso invariant

under anSJ (4) subgroup of the continuum chiral symmetry group. Under this subgritep,

staggered fermion fields at even sites and odd sites transform as
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respectively. In this model, the six onsite fermion bilinear condensgigsix 1, Py W 2, Py 1 Y 2,
Wy oWk 1, Yxalk2, Py o Py 4, transform as a sextet 8U (4) and hence again are forbidden to acquire
a non-zero expectation value unless $a§4) symmetry is spontaneously broken.

3. The Fermion Bag Approach

Fermion bags provide a new approach to write partition functions of latticederfield the-
ories. In particular, there is no need to introduce auxiliary fields in fermfon models. The
weak coupling diagrammatic Monte Carlo methods for fermion systems devetepextly, can
be viewed as a subset of the fermion bag approach. A recent revieledaund in [8]. Although
the fermion bag approach was introduced as a new way to perform Manle €lculations, here
we show that it also gives new theoretical insight into the mechanism of farméss generation
in the two models discussed above. Using fermion bags we will argue thaffiatently large
couplings, a chiral condensate can form in Model 1 but not in ModaltBpugh fermions in both
models become massive.

In the fermion bag approach, the partition function of Model 1 can be wrésen

Z = ZUNBUDet(ng) (3.1)
B
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Figure1l: Examples of fermion bag configurations in Model 1 (left) andddl 2 (right). Fermion bags are
defined as the connected set of sites which do not belonghtereitbond (left) or a monomer (right)V is
the Dirac matrix associated with the bag.

where(b] is a bond configuration (see Fig.1 on the left) &gdis the number of bonds. Fermions
can hop freely on sites that do not contain bonds. A connected regisucbffree sites forms a
fermion bag denoted hyg. Fermion bags are determined uniquely in a given configuraicemd
there can be many fermion bags. The maktyix is the Dirac matrix associated with the bagjand

is obtained from the staggered fermion matviXoy restricting it to sites within the bag. Similarly,
the partition function of Model 2 can be written as

zZ = %uNm D {Det(Wy) }? (3.2)

where[n| is a monomer configuration (see Fig. 1 on the right) Bipds the number of monomers.
The definition of fermion bags¥ and matrixWy is the same as above, except that monomers
replace bonds. The presence of two flavors is the reason for theesofithe determinant in (3.2).
An important property o¥V; is that it is anti-symmetric with non-zero matrix elements only
between even and odd sites of the bag. Hence, in a bag which doeswteih@n equal number of
even and odd site®y, will have zero modes. We can introduce the concept of “topology” ofta ba
by defining its topological charge as= ne — no, Wherene (ng) is the number of even (odd) sites
in the bag. TheW will have |v| zero modes for topological reasons, very similar to the index
theorem in the continuum. An example ofa= 1 topological fermion bag is shown in Fig. 2.

4. Fermion Mass

Fermion masses are computed through the exponential decay of fermiopitwagrrelation
functions, defined through the relation

<pr71 wy71> = % % Ggg/(X,y)UNm I;{Det(wg)}{ 4.1)

in Model 2. Here the sum is only over those configuratiomsvhere bothx andy belong to the
same bag#’ and the fermion propagat@z (x,y) is obtained by computing the appropriate matrix
element of(\ Wz )~L. A similar relation exists in Model 1.
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F|gu_re 2 An _exam_ple of fw =1 tgpplgglcal Figure 3: . Fermion two point correlation functions
fermion bag. Since it contains the siteit is la- I . o .
ch get contribution from points within the fermion bag.

belled 3‘%' Was will have one zero.mode. Su égg is defined as the largest distance between two
topological bags contribute to the chiral condensat&”.

ints in the fermion .
in Model 1, but not in Model 2. points in the fermion bag

If &4 is defined as the largest possible distance between any two points within (@deag
Fig. 3) then the fermion mass (in lattice units) must be greater than or equal‘tggieal”’ values
of 1/&4 in fermion bags sampled during the Monte Carlo calculation. In other worelStytpical”
fermion bag size determines the fermion mass. At strong couplings when febags are small,
fermions become massive.

5. Chiral Condensate

Traditionally we expect a non-zero fermion mass to exist only in the preseha chiral
condensate, i.e{UY) # 0. As we will see below, this is not necessary. The chiral condensate
can be computed using the large distance behavior of the two point bosretation function
through the relation

lim (@ Tyuy) = (TY)*. (5.1)

[X—y|—o0
In the fermion bag approach the bosonic correlation function can getitmations from a con-
nected and a disconnected component. In the connected componentdradly belong to the
same bag, while in the disconnected compomearidy belong to different bags. In Model 1 these
two components are given by

(Bwww) . = 3 > {uNB Dt (i) ] {PetW)} } (5.2)
(Buww), =53 {uNBDet(w%axm Detwis, () [ {Det<w%>}}<s.s>
[b] BB, By
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Figure 4. Plots showing the susceptibility as a function of latticeesior Model 1 atU = 0.8 (left) and
Model 2 at different values dfl (right). In Model 1 we distinguish between the full and thencected
component of the susceptibility.

In the above expression8yy stands for the fermion bag that contains both the sitesdy, %y
is the bag that contains but noty, similarly 4, is the bag that containg but notx. Further,
Wz, ([x,y]) is the fermion bag Dirac matrix with sitesandy removed, similarlyz, (x]) is the
fermion bag Dirac matrix with the sitedropped and similarlyV ([y]) is the matrix with the site
y dropped. The connected and disconnected components in Model Xemdy

NI —

(Gt wiy) =

Conn

5 {uNm Det(Wi,, ([x.))) DetWs,,) [] {Det(w@>}2}(s.4>

] BF By

[

(Wl vw) =3 {UNm Det(Wa, (X)) Det(Wy,) Det(Way, ([y])) Det(Was,)
)

< {Det(Ws)}? } (5.5)

B+ B, By

Since at strong couplings large bags are exponentially suppressedntiected component of the
two point correlation function (5.1) will decay exponentially. Hence, thedemsate can only form
if the disconnected component can contribute to the correlation functipaeciedy whenx andy
are located in two different fermion bags far from each other.

It is easy to argue that in Model 1, the disconnected component (5.3higato due to the
existence of = +£1 fermion bags in which D&z ([x])) # 0 although DetWy, ) = O (see Fig. 2).
The feature of the zero mode that it contributes to the condensate, botthet partition function
is well known in the continuum [9]. In contrast, in Model 2 the right hanc €l (5.5) exactly
vanishes sinc& = +£1 bags satisfy the identity D&V, ([X])) Det(Wz,) = 0. In other words, if
the zero mode from one flavor tries to contribute to the condensate, the sammade present
in the other flavor forbids it. Since the disconnected part cannot cotgribtisufficiently strong
couplings the chiral condensate vanishes in Model 2 although fermiemaassive.
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6. Numerical Results

The discussion presented above is valid at |&fg€o understand how large is large enough,
we have computed the full susceptibility and its connected component defined a

XU =13 > (WU, xeomll) = > S (Btiy). (6.1)

In the previous section we predicted that these two quantities behavediffeat largeJ in Model

1. While the full susceptibility should diverge with the volume, the connectetpoment should
saturate. In Fig. 4 we show that this is observed evdt at0.8. The transition to the massless
phase occurs &i; = 0.26. Similarly, we predicted that in Model 2 that the full susceptibility will
saturate at large couplings. Fig. 4 shows that this occurs ed¢r=at.2. In this case the transition

to the massless phase occurdat 0.96 wherex (L) diverges due to the presence of a second order
transition.

7. Conclusions

The fermion bag approach sheds light on a new mechanism of fermion eraamgon. While
the fermion mass is related to the fermion bag size, the chiral condensasetarisi® special topo-
logical fermion bags in which the Dirac operator has zero modes. Theratresting lattice
fermion models where typical fermion bags are small and topological badsghly suppressed.
In such models, fermions become massive without the formation of a chitdeosate. Recent re-
sults suggest that this exotic fermion mass generation mechanism could bere$iim continuum
gquantum field theory [10].
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