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1. TheModd

1.1 . =1SUSY Yang-Mills Theory

The .4 = 1 supersymmetric Yang-Mills theory (SYM) is the simplespstsymmetric field
theory containing non-Abelian gauge fields. Its structa@hplexity is, however, comparable to
that of QCD. Its field content is given by a vector supermigtipconsisting of a gauge fiel, (x),
a=1,...,N2 -1, describing gluons belonging to the gauge groupNg}J(a fermionic spinor
field A2(x), obeying the Majorana conditioh = A TC, and an auxiliary field. The Majorana field
describes gluinos, the superpartners of gluons, and isftbtems under the adjoint representation
of the gauge groupZ, A% = 0d,A%+g fabCAB)\C. The on-shell Lagrangean of SYM in Euclidean

space-time reads

1 1-
L = JFRRS+ 5 A(ZuA) (1.1)

It is invariant under the SUSY transformations
OA% = —2iA%ye, SA%= -0y, F 2. (1.2)

Being part of the supersymmetrically extended Standardeéljd8lYM represents an interesting
field theory. It has some similarities to QCD, the importaiffedences being that gluinos are
Majorana patrticles, and that they are in the adjoint repitesien, in contrast to quarks.

The Lagrangean can be extended to include a gluino massnl@EﬁA 4, The gluino mass
breaks SUSY softly. The action is only invariant under sapemmetry transformations in the limit

mg = 0.
1.2 Motivation

SYM is an interesting laboratory for the study of the projesrof supersymmetric models. As
in the case of QCD, SYM is characterised by a number of notsfEtive aspects, which can be
investigated in a lattice-discretised version:

e SYM has a discrete chiral symmet&g\,, which is predicted to be broken spontaneously
down toZ,. The breaking is associated with a gluino condensateA >+ 0.

e SYM is expected to show confinement, and the particle sthtasld be bound states, form-
ing supermultiplets.

e Static quarks, belonging to the fundamental representatidghe gauge group, are expected
to be confined.

e Spontaneous breaking of SUSY is predicted not to occur favISY

e SUSY is broken by the lattice regularisation. A questionalihis still open is if there is a
continuum limit in which SUSY is restored?

e Predictions about the low-lying particle spectrum froneefive Lagrangeans [1, 2] should
be checked on the lattice.
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1.3 SUSY on the Lattice

Lattice discretisation generically breaks SUSY [3]. In ti@se of SYM a fine-tuning of the
bare gluino mass parameter in the continuum limit is enoogipproach both the (spontaneously
broken) chiral symmetry and supersymmetry of the contintiu@ory [4, 5]. Based on this, Curci
and Veneziano [4] proposed to use the Wilson action and tolséar a supersymmetric continuum
limit by an appropriate tuning of parameters. The Wilsonoactor SYM is given by

B
S=—-——) ReTru
NC% P

4
+ Z_2L 2{)\32\5— Kﬂzl [Afwvab,xu(l*' Vi) A + AdVap (1 - Vu))\fw} }a (1.3)
whereVapxy are the link variables in the adjoint representation. Thampaters in the lattice action
are the inverse gauge couplig= 2N./g? and the hopping parameter= 1/(2mg + 8), related to
the bare gluino magsy.

Numerical simulations of this model, with gauge group SU(@ve been performed by the
Minster-DESY-Frankfurt group in recent years, see theritmritons to this conference by P. Giu-
dice and S. Piemonte, and Refs. [6, 7].

2. The Goals

2.1 Phasetransition for SU(2)

As a function of the hopping parameterthe gluino condensate makes a jump at a certain
valuekc. In the phase diagram the lime= k() represents a first order phase transition.

The recovery of both supersymmetry and chiral symmetry éncibntinuum limit requires to
tune the hopping parameter to the patt), where the renormalised gluino mass vanishes [4, 5].

2.2 Theadjoint pion

The gluino mass term is not protected against additive realisation in the Curci-Veneziano
formulation. Therefore the point of vanishing gluino massot given a priori, but has to be
determined with suitable observables. A numerically ety cheap and therefore attractive way
to tune tok; is to search for the point where the adjoint pion mass vasishg; — 0.

However, SYM does not have a continuous chiral symmetry hod the spontaneous chiral
symmetry breaking is not accompanied by (pseudo-)Goldstmsons like pions, whose masses
would vanish in the chiral limit. So, what is the adjoint piaArT?

A pseudoscalar mesonic bound state, calleg’ais represented by the interpolating field
AwA. Its correlator has connected and disconnected pieces:

QO
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phase structure

Figure1: The phase diagram of SYM with gauge group SU(2)

The correlator of the areis now given by the connected part of theja€orrelator, and the adjoint
pion mass can be obtained unambiguously from it. Thea@ssrelator has the form of the correlator
of a meson formed out of different gluino species. But sing&ISnly contains one gluino, the
a—ris not a physical particle in the Hilbert space of the theory.

The assumption underlying the tuning rfis that the adjoint pion mass vanishes with the
renormalised gluino mass as

M 0 mg, (2.1)
analogously to the Gell-Mann-Oakes-Renner (GOR) relaifd@CD [8],

e, 0 my. (2.2)

An argument for this relation, based on the OZI-approxioratf SYM, has been given in [1].

On the other hand, the renormalised gluino ntagsan be determined by means of the lattice
supersymmetric Ward identities as discussed in [9]. Nuraémvestigations of botimg from su-
persymmetric Ward identities amd,_; have been performed in [10]. The results are in agreement
with 1/1 1 1 1

amyZs = (E - K_c> ) (aman)® ~ A (E - K_c> ) (2.3)
and support the validity of the above assumption, see Figlt® a-fr, however, yields a more
precise signal for the tuning than the supersymmetric W@edtities.

2.3 Goals

The goals of this work are:
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e define the adjoint pion axproperly,

e establish the relatiom?_, O m.

2.4 Approach

In QCD the GOR relation can be derived in the framework ofaltperturbation theory. Thus
the idea is to use this as a starting point for SYM, too. In @sttto QCD, however, SYM does not
have a continuous chiral symmetry. Therefore the approankists in adding additional flavours
of gluinos, Aj(x), i = 2,...,N, which are quenched, in order to keep SUSY intact. This isra pa
ticular case of Partially Quenched Chiral PerturbationofipdPQChPT), in the spirit of the case
of one-flavour QCD [11]. With the help of the additional glag) adjoint pions can be formed as
Aivs(Ta)ijAj with i, j =1,2.

3. The Calculation

3.1 Adding gluinos

Let us start by extending SYM witN — 1 additional flavours of gluinog;(x), i =2,...,N. In
contrast to QCD, where the chiral symmetry groutNajuarks is given by SIN). @ SU(N)g, due
to the Majorana condition the chiral symmetry group of edhSYM turns out to be given by a
subgroup isomorphic to SM. If the gluinos are represented as Weyl fermions, thisNGUK the
group of transformations dff Weyl fermions.

Spontaneous breakdown of chiral symmetry, accompaniedhyvanishing gluino conden-
sates, breaks the gro@= SU(N) down toH = SQ(N). To be specific, we consider the ca¢e- 2
in the following. The Goldstone manifold is then the cosetcsis /H = SU(2) /SO(2) ~ . It can
be parameterised hy= exp(ia;1 T +iasTs), whereT; are the generators of SU(2). It is now conve-
nient to define the nonlinear Goldstone boson fieltUliy) = u(x)? = u(x)u(x)" = exp(i (x)/F),

Lattice: 24°.48 p=1.6 TS-PHMC
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Figure 2: The renormalised gluino mass from SUSY Ward identitied flgtire) and the adjoint pion mass
squared (right figure) as functions of
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because the transformation law of this group valued field,
UX) —U'(x)=VUXVT, VeSU?), (3.1)

is similar to that of the usual chiral perturbation theory.
Analogously to the approach used in QCD, the leading ordectafe Lagrangean can be
determined to be

F2 F2
Ly =~ r(9,U oMU + ?tr(qu +Uxh), (3.2)
where
X = 2Bomgl
is the symmetry breaking mass term, &hdndBy are low-energy constants.
Note that the theory with 2 gluinos might be conformal or re@mformal [12], implying a

different breaking pattern. However, its discussion hesegerves as a preparation of the following
PQChHPT analysis, which is not affected by this possibility.

3.2 PQChPT

In order that the dynamical content of the model is identic#éihat of SYM, and the correlation
functions of the original fields are unchanged, the addii@iuinos have to be quenched, which
means that they are not taken into account in the fermiomictional integral. This is a case of
PQChPT [13, 14]. Partial quenching can be described theallgtby the introduction of bosonic
ghost fermions [15], in our case ghost gluinos. The cortidiouof the ghost gluinos exactly cancels
the contribution of the additional gluinos, and only the teitmition of the original single gluino
remains. In the case ™ = 2 there is a single ghost gluinm(x), compensating the contribution
of the additional gluino. The resulting chiral symmetry gpds the graded group SU®, and the
Goldstone boson field is a graded matrix field

Bss Gy Psg
O=| s Qv Qg | - (3.3)
@s Pov Pyg
wheres, v andg stand for sea, valence and ghost. Now the adjoint pion cdmisrfarmulation be

defined to be the meson representedply
The leading order effective Lagrangean for the partiallgrgghed theory is given by

2 2
2R = FT str(d,Ua U™y + FT str(xUT+UxT), (3.4)

where str denotes the supertrace. The next-to-leading tedas can be constructed analogously
to the NLO terms for QCD [16], and are not reproduced here.yTdoatain further low-energy
constantd j, the so-called Gasser-Leutwyler coefficients.

The masses of the pseudo-Goldstone bosons can be calculd®€IChPT by means of the
effective Lagrangean. We have calculated them in NLO. Wdsetke tree-level contributions are
similar to the ones in QCD, the loop contributions differ daghe different group structure. For
the mass of the adjoint piam,_; we find

2Bomg)?
ME_, = 2Bomg + (272@(3&8 —2L4—T7Ls+8Llg), (3.5)
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with the low-energy coefficientls; mentioned above. For smaifly we recognise the desired GOR-
relation

m_, = 2Bomg. (3.6)
3.3 Results

To summarise, the results of this investigation are:
e The adjoint pion asis defined in PQChPT,
e m2_, = 2Bomy in leading order PQChPT.

Details can be found in [17].
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