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Adding a gluino mass term toN = 1 supersymmetric Yang-Mills theory breaks supersymmetry

softly. In order to approach the supersymmetric continuum limit in numerical simulations with the

Wilson action, the bare gluino mass has to be tuned to the limit of vanishing renormalised gluino

mass. This can be done efficiently by means of the mass of the adjoint pion, which is, however, an

unphysical particle. We discuss how the adjoint pion can be defined in the framework of partially

quenched chiral perturbation theory. A relation between its mass and the mass of the gluino,

analogous to the Gell-Mann-Oakes-Renner relation of QCD, can be derived.
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1. The Model

1.1 N = 1 SUSY Yang-Mills Theory

TheN = 1 supersymmetric Yang-Mills theory (SYM) is the simplest supersymmetric field
theory containing non-Abelian gauge fields. Its structuralcomplexity is, however, comparable to
that of QCD. Its field content is given by a vector supermultiplet, consisting of a gauge fieldAa

µ(x),
a = 1, . . . ,N2

c − 1, describing gluons belonging to the gauge group SU(Nc), a fermionic spinor
field λ a(x), obeying the Majorana condition̄λ = λ TC, and an auxiliary field. The Majorana field
describes gluinos, the superpartners of gluons, and it transforms under the adjoint representation
of the gauge group:Dµλ a = ∂µλ a+g fabcAb

µλ c. The on-shell Lagrangean of SYM in Euclidean
space-time reads

L =
1
4

F a
µνF a

µν +
1
2

λ̄ aγµ(Dµ λ )a. (1.1)

It is invariant under the SUSY transformations

δAa
µ =−2i λ̄ aγµε , δλ a =−σµνF a

µνε . (1.2)

Being part of the supersymmetrically extended Standard Model, SYM represents an interesting
field theory. It has some similarities to QCD, the important differences being that gluinos are
Majorana particles, and that they are in the adjoint representation, in contrast to quarks.

The Lagrangean can be extended to include a gluino mass termmg̃ λ̄ aλ a. The gluino mass
breaks SUSY softly. The action is only invariant under supersymmetry transformations in the limit
mg̃ = 0.

1.2 Motivation

SYM is an interesting laboratory for the study of the properties of supersymmetric models. As
in the case of QCD, SYM is characterised by a number of non-perturbative aspects, which can be
investigated in a lattice-discretised version:

• SYM has a discrete chiral symmetryZ2Nc, which is predicted to be broken spontaneously
down toZ2. The breaking is associated with a gluino condensate< λλ > 6= 0.

• SYM is expected to show confinement, and the particle states should be bound states, form-
ing supermultiplets.

• Static quarks, belonging to the fundamental representation of the gauge group, are expected
to be confined.

• Spontaneous breaking of SUSY is predicted not to occur for SYM.

• SUSY is broken by the lattice regularisation. A question which is still open is if there is a
continuum limit in which SUSY is restored?

• Predictions about the low-lying particle spectrum from effective Lagrangeans [1, 2] should
be checked on the lattice.
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1.3 SUSY on the Lattice

Lattice discretisation generically breaks SUSY [3]. In thecase of SYM a fine-tuning of the
bare gluino mass parameter in the continuum limit is enough to approach both the (spontaneously
broken) chiral symmetry and supersymmetry of the continuumtheory [4, 5]. Based on this, Curci
and Veneziano [4] proposed to use the Wilson action and to search for a supersymmetric continuum
limit by an appropriate tuning of parameters. The Wilson action for SYM is given by

S=−
β
Nc

∑
p

Re TrUp

+
1
2 ∑

x

{

λ̄ a
x λ a

x −κ
4

∑
µ=1

[

λ̄ a
x+µ̂Vab,xµ (1+ γµ)λ b

x + λ̄ a
xVt

ab,xµ (1− γµ)λ b
x+µ̂

]

}

, (1.3)

whereVab,xµ are the link variables in the adjoint representation. The parameters in the lattice action
are the inverse gauge couplingβ = 2Nc/g2 and the hopping parameterκ = 1/(2m0+8), related to
the bare gluino massm0.

Numerical simulations of this model, with gauge group SU(2), have been performed by the
Münster-DESY-Frankfurt group in recent years, see the contributions to this conference by P. Giu-
dice and S. Piemonte, and Refs. [6, 7].

2. The Goals

2.1 Phase transition for SU(2)

As a function of the hopping parameterκ the gluino condensate makes a jump at a certain
valueκc. In the phase diagram the lineκ = κc(β ) represents a first order phase transition.

The recovery of both supersymmetry and chiral symmetry in the continuum limit requires to
tune the hopping parameter to the pointκc(β ), where the renormalised gluino mass vanishes [4, 5].

2.2 The adjoint pion

The gluino mass term is not protected against additive renormalisation in the Curci-Veneziano
formulation. Therefore the point of vanishing gluino mass is not given a priori, but has to be
determined with suitable observables. A numerically relatively cheap and therefore attractive way
to tune toκc is to search for the point where the adjoint pion mass vanishes: ma–π → 0.

However, SYM does not have a continuous chiral symmetry and thus the spontaneous chiral
symmetry breaking is not accompanied by (pseudo-)Goldstone bosons like pions, whose masses
would vanish in the chiral limit. So, what is the adjoint piona–π ?

A pseudoscalar mesonic bound state, called a–η ′, is represented by the interpolating field
λ̄ γ5λ . Its correlator has connected and disconnected pieces:

x y

- 2 x y
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Figure 1: The phase diagram of SYM with gauge group SU(2)

The correlator of the a–π is now given by the connected part of the a–η ′ correlator, and the adjoint
pion mass can be obtained unambiguously from it. The a–π correlator has the form of the correlator
of a meson formed out of different gluino species. But since SYM only contains one gluino, the
a–π is not a physical particle in the Hilbert space of the theory.

The assumption underlying the tuning ofκ is that the adjoint pion mass vanishes with the
renormalised gluino mass as

m2
a–π ∝ mg̃ , (2.1)

analogously to the Gell-Mann-Oakes-Renner (GOR) relationof QCD [8],

m2
π ∝ mq . (2.2)

An argument for this relation, based on the OZI-approximation of SYM, has been given in [1].
On the other hand, the renormalised gluino massmg̃ can be determined by means of the lattice

supersymmetric Ward identities as discussed in [9]. Numerical investigations of bothmg̃ from su-
persymmetric Ward identities andma–π have been performed in [10]. The results are in agreement
with

amg̃ZS=
1
2

(

1
κ
−

1
κc

)

, (ama–π)
2 ≃ A

(

1
κ
−

1
κc

)

, (2.3)

and support the validity of the above assumption, see Fig. 2.The a–π, however, yields a more
precise signal for the tuning than the supersymmetric Ward identities.

2.3 Goals

The goals of this work are:
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• define the adjoint pion a–π properly,

• establish the relationm2
a–π ∝ mg̃.

2.4 Approach

In QCD the GOR relation can be derived in the framework of chiral perturbation theory. Thus
the idea is to use this as a starting point for SYM, too. In contrast to QCD, however, SYM does not
have a continuous chiral symmetry. Therefore the approach consists in adding additional flavours
of gluinos,λi(x), i = 2, . . . ,N, which are quenched, in order to keep SUSY intact. This is a par-
ticular case of Partially Quenched Chiral Perturbation Theory (PQChPT), in the spirit of the case
of one-flavour QCD [11]. With the help of the additional gluinos, adjoint pions can be formed as
λ̄iγ5(τα)i j λ j with i, j = 1,2.

3. The Calculation

3.1 Adding gluinos

Let us start by extending SYM withN−1 additional flavours of gluinosλi(x), i = 2, . . . ,N. In
contrast to QCD, where the chiral symmetry group ofN quarks is given by SU(N)L⊗SU(N)R, due
to the Majorana condition the chiral symmetry group of extended SYM turns out to be given by a
subgroup isomorphic to SU(N). If the gluinos are represented as Weyl fermions, this SU(N) is the
group of transformations ofN Weyl fermions.

Spontaneous breakdown of chiral symmetry, accompanied by non-vanishing gluino conden-
sates, breaks the groupG=SU(N) down toH =SO(N). To be specific, we consider the caseN= 2
in the following. The Goldstone manifold is then the coset spaceG/H =SU(2)/SO(2)∼S2. It can
be parameterised byu= exp(iα1T1+ iα3T3), whereTi are the generators of SU(2). It is now conve-
nient to define the nonlinear Goldstone boson field byU(x) = u(x)2 = u(x)u(x)T .

= exp(i φ(x)/F),

Figure 2: The renormalised gluino mass from SUSY Ward identities (left figure) and the adjoint pion mass
squared (right figure) as functions ofκ
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because the transformation law of this group valued field,

U(x)→U ′(x) =VU(x)VT , V ∈ SU(2), (3.1)

is similar to that of the usual chiral perturbation theory.
Analogously to the approach used in QCD, the leading order effective Lagrangean can be

determined to be

L2 =
F2

4
tr(∂µU∂ µU†)+

F2

4
tr(χU†+Uχ†), (3.2)

where
χ = 2B0mg̃1

is the symmetry breaking mass term, andF andB0 are low-energy constants.
Note that the theory with 2 gluinos might be conformal or near-conformal [12], implying a

different breaking pattern. However, its discussion here just serves as a preparation of the following
PQChPT analysis, which is not affected by this possibility.

3.2 PQChPT

In order that the dynamical content of the model is identicalto that of SYM, and the correlation
functions of the original fields are unchanged, the additional gluinos have to be quenched, which
means that they are not taken into account in the fermionic functional integral. This is a case of
PQChPT [13, 14]. Partial quenching can be described theoretically by the introduction of bosonic
ghost fermions [15], in our case ghost gluinos. The contribution of the ghost gluinos exactly cancels
the contribution of the additional gluinos, and only the contribution of the original single gluino
remains. In the case ofN = 2 there is a single ghost gluinoρ(x), compensating the contribution
of the additional gluino. The resulting chiral symmetry group is the graded group SU(2|1), and the
Goldstone boson field is a graded matrix field

φ =







φss φsv φsg

φvs φvv φvg

φgs φgv φgg






, (3.3)

wheres, v andg stand for sea, valence and ghost. Now the adjoint pion can in this formulation be
defined to be the meson represented byφsv.

The leading order effective Lagrangean for the partially quenched theory is given by

L
PQ
2 =

F2

4
str(∂µU∂ µU†)+

F2

4
str(χU†+Uχ†), (3.4)

where str denotes the supertrace. The next-to-leading order terms can be constructed analogously
to the NLO terms for QCD [16], and are not reproduced here. They contain further low-energy
constantsLi, the so-called Gasser-Leutwyler coefficients.

The masses of the pseudo-Goldstone bosons can be calculatedin PQChPT by means of the
effective Lagrangean. We have calculated them in NLO. Whereas the tree-level contributions are
similar to the ones in QCD, the loop contributions differ dueto the different group structure. For
the mass of the adjoint pionma–π we find

m2
a–π = 2B0mg̃+

(2B0mg̃)
2

F2 (30L8−2L4−7L5+8L6), (3.5)

6



P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
3
1
0

PQChPT forN = 1 supersymmetric Yang-Mills theory Gernot Münster

with the low-energy coefficientsLi mentioned above. For smallmg̃ we recognise the desired GOR-
relation

m2
a–π = 2B0mg̃. (3.6)

3.3 Results

To summarise, the results of this investigation are:

• The adjoint pion a–π is defined in PQChPT,

• m2
a–π = 2B0mg̃ in leading order PQChPT.

Details can be found in [17].
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