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1. Introduction

In this paper we focus on the phase structure of Z(N) lattice gauge theories (LGTs), which are
interesting on their own and can provide for useful insights into the universal properties of SU(N)

LGTs, being Z(N) the center subgroup of SU(N). The most general action for the Z(N) LGT is

Sgauge = ∑
x

∑
n<m

N

∑
k=1

βk cos
(

2πk
N

(sn(x)+ sm(x+ en)− sn(x+ em)− sm(x))
)

. (1.1)

Gauge fields take on values sn(x) = 0,1, · · · ,N−1 and are defined on the links of the lattice. Z(N)

gauge models can generally be divided into two classes: standard Potts models (all βk equal) and
vector models (otherwise). The conventional vector model corresponds to βk = 0 for all k > 1. For
N = 2, 3 the Potts and vector models are equivalent.

An extended description of the phase structure of Z(N) LGTs in three dimension can be found
in [1, 2, 3]. In those papers we explored the phase structure of the vector Z(N) LGTs for N > 4.
We considered first an anisotropic lattice in the limit where the spatial coupling vanishes [1] and
were able to present both renormalization group (RG) and numerical evidences for the existence
of two BKT-like phase transitions: a (i) first transition, from a symmetric, confining phase to
an intermediate phase, where the Z(N) symmetry is enhanced to U(1) symmetry; (ii) a second
transition, from the intermediate phase to a phase with broken Z(N) symmetry. We computed
also some critical indices, which appear to agree with the corresponding indices of 2D Z(N) spin
models, thus giving further support to the Svetitsky-Yaffe conjecture [4]. In particular, we found
that the magnetic critical index η at the first transition, η(1), takes the value 1/4 as in 2D XY , while
its value at the second transition, η(2), is equal to 4/N2. Then, we extended our analysis to the
full isotropic 3D Z(N) LGT at finite temperature [2] and confirmed by numerical Monte Carlo
simulations [2] that the full gauge models with N > 4 possess two phase transitions of the BKT
type, with critical indices coinciding with those of 2D vector spin models.

Here we extend the study of Ref. [2] to other values of N and to Nt = 8 and aim at checking the
scaling near the continuum limit and at establishing the scaling formula for critical points with N.
In particular, the theory of dimensional cross-over [5] explains how critical couplings and indices
of a finite temperature LGT (finite Nt) approach critical couplings and indices of the corresponding
zero-temperature theory (Nt→∞). This provides us with a way to crosscheck our zero-temperature
results [3] and thus predict the critical temperature in the continuum limit.

The standard approach for studying a BKT transition consists in using Binder cumulants and
susceptibilities of the Polyakov loop to determine critical couplings and critical indices. Here,
as in Ref. [2], we follow a different strategy: we move to a dual formulation and use Binder
cumulants and susceptibilities of dual Z(N) spins. This implies that (i) the critical behavior of
dual spins is reversed with respect to that of Polyakov loops, namely the spontaneously-broken
ordered phase is mapped to the symmetric phase and vice versa; (ii) the magnetic critical indices
η are interchanged, whereas the index ν is expected to be the same (=1/2) at both transitions (see
Ref. [2] for details). The obvious advantage of this approach is that cluster algorithms become
available, with considerable speed up in the numerical procedure.
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2. Theoretical setup

The 3D Z(N) gauge theory on an anisotropic 3D lattice Λ can generally be defined as

Z(Λ;βt ,βs;N) = ∏
l∈Λ

(
1
N

N−1

∑
s(l)=0

)
∏
ps

Q(s(ps)) ∏
pt

Q(s(pt)) , (2.1)

where the link angles s(l) are combined into the conventional plaquette angle

s(p) = sn(x)+ sm(x+ en)− sn(x+ em)− sm(x) . (2.2)

Here, en (n = 0,1,2) denotes a unit vector in the n-th direction and the notation pt (ps) stands for
the temporal (spatial) plaquettes. Periodic boundary conditions (BC) on gauge fields are imposed
in all directions. The most general Z(N)-invariant Boltzmann weight with N−1 different couplings
is

Q(s) = exp

[
N−1

∑
k=1

βp(k)cos
2πk
N

s

]
. (2.3)

The Wilson action corresponds to the choice βp(1) = βp, βp(k) = 0,k = 2, ...,N−1, which is the
one adopted in this work. Furthermore, we will consider an isotropic lattice: βs = βt = β .

Our study is based on the mapping of the gauge model to a generalized 3D Z(N) spin model
on a dual lattice Λd , whose action is

S = ∑
x

3

∑
n=1

N−1

∑
k=1

βk cos
(

2πk
N

(s(x)− s(x+ en))

)
. (2.4)

The dual mapping is realized once one specifies the relationship between the original gauge cou-
pling β and the dual effective couplings βk. This has been done in Ref. [2] (see also Ref. [6]) and
the result is

βk =
1
N

N−1

∑
p=0

ln
[

Qd(p)
Qd(0)

]
cos
(

2π pk
N

)
. (2.5)

For N = 5 it can be seen explicitly [2] that |β1| � |β2|, thus suggesting that the 3D vector
spin model with only β1 non-vanishing gives already a reasonable approximation of the gauge
model. Moreover the weak and the strong coupling regimes are interchanged, i.e. when β → ∞

the effective couplings βk → 0 and, therefore, the ordered symmetry-broken phase is mapped to
a symmetric phase with vanishing magnetization of dual spins, whereas the symmetric phase at
small β becomes an ordered phase where the dual magnetization is non-zero. The interchange of
phases under the dual mapping is not a special feature of N = 5, but is rather a general property
valid for any N. In Ref. [2] it was also discussed that at the critical point β

(1)
c of the first transition

of the LGT (from the symmetric to the intermediate phase), the dual correlation function scales
with a critical index η equal to the index η(2) = 4/N2 of the Polyakov loop correlator in the LGT,
while at the critical point β

(2)
c of the second transition in the LGT (from the intermediate to the

broken phase), it scales with a critical index η equal to the index η(1) = 1/4 of the Polyakov loop
correlator in the LGT. This can be proved in the Villain formulation of the 2D theory and only
conjectured (but confirmed numerically) in the 3D case [2].
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Table 1: Values of β
(1)
c and β

(2)
c obtained for various Nt in 3D Z(N) with N = 5, 6, 8, 12, 13 and 20.

N Nt β
(1)
c β

(2)
c

5 2 1.617(2) 1.6972(14)
5 4 1.943(2) 1.9885(15)
5 6 2.05(1) 2.08(1)
5 8 2.085(2) 2.1207(9)
5 12 2.14(1) 2.16(1)
6 2 - 2.3410(15)
6 4 - 2.725(12)
6 8 - 2.899(4)
8 2 - 3.8640(10)
8 4 2.544(8) 4.6864(15)
8 8 3.422(9) 4.9808(5)

N Nt β
(1)
c β

(2)
c

12 2 - 8.3745(5)
12 4 - 10.240(7)
12 8 - 10.898(5)
13 2 1.795(4) 9.735(4)
13 4 2.74(5) 11.959(6)
13 8 3.358(7) 12.730(2)
20 2 - 22.87(4)
20 4 2.57(1) 28.089(3)
20 8 3.42(5) 29.758(6)

3. Numerical setup and results

The 3D Z(N) spin model, dual of the 3D Z(N) Wilson LGT, has been simulated by means of
a cluster algorithm on Nt×L×L lattices with periodic BC. The system has been studied for N = 5,
6, 8, 12, 13 and 20 on lattices with the temporal extension Nt=2, 4, 8. With respect to our previous
work [2], we considered new values of N (6, 8, 12, 20) and included also Nt = 8. We focused on
the following observables:

• complex magnetization ML = |ML|eiψ , with ML = ∑x∈Λ exp
(2πi

N s(x)
)
, where we stress that

s(x) is a dual spin variable;

• real part of the rotated magnetization, MR = |ML|cos(Nψ), and normalized rotated magneti-
zation, mψ = cos(Nψ);

• susceptibilities of ML and MR, χ
(M)
L , χ

(MR)
L : χ

(·)
L = L2Nt

(〈
·2
〉
−〈·〉2

)
;

• Binder cumulants U (M)
L and B(MR)

4 : U (M)
L = 1− 〈|ML|4〉

3〈|ML|2〉2
, B(MR)

4 =
〈|MR−〈MR〉|4〉
〈|MR−〈MR〉|2〉2

.

To determine the critical couplings of the second transition point, β
(2)
c , we have looked for the

value of β at which the curves giving the Binder cumulant U (M)
L (β ) on lattices with different size

L “intersect” (see Ref. [7] for details). The same method can in principle be used for the couplings
of the first transition, β

(1)
c , using either the Binder cumulant B(MR)

4 or mψ ; it turned out, however,
that the precision required by this method on these observables could not be met with a sensible
simulation time. For this reason, as the position of the first critical point we used our previous
determinations given in Ref. [2], where β

(1)
c was taken as the value of β at which B(MR)

4 and mψ

plotted versus (β −β
(1)
c )lnL1/ν show the best overlap for different values of L. The results of the

determinations of β
(1)
c and β

(2)
c are summarized in Table 1.

For the critical couplings at the second transition, β
(2)
c , where determinations for many values

of N are available, we tried to find a simple scaling dependence with N at fixed Nt . From the
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Table 2: Parameters of the scaling with N of the second transition point, β
(2)
c = A/(1− cos2π/N)+B(1−

cos2π/N) at fixed Nt .

Nt A B χ2
r

2 1.1194(11) 0.141(24) 209
4 1.37440(60) -0.0046(88) 18.2
8 1.45745(57) 0.0155(53) 16.1
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Figure 1: Scaling function A/(1− cos2π/N)+B(1− cos2π/N) versus data for β
(2)
c at Nt = 2, 4, 8 (from

left to right).

solution of the renormalization group equations for 2D Z(N) spin model, we know that in that
model β

(2)
c (N) grows as N2 for large N [8]. In [1] we have found that this is the case also for the

3D Z(N) LGT at finite temperature, at least in the strong coupling limit. Taking inspiration from
Ref. [9], we started from a scaling law written in the form β

(2)
c (N) = A/(1− cos2π/N). Then,

considering that the next non-negligible correction comes at the order 1/N2, we added a second
term and ended up with the same scaling function we used in the zero-temperature case [3],

β
(2)
c (N) =

A
(1− cos2π/N)

+B(1− cos2π/N) .

In Table 2 we report the values of the parameters A and B for Nt = 2, 4, 8, while Figs. 1 shows the
fitting functions against numerical data.

Finding the continuum limit of the finite temperature theory in the first or in the second transi-
tion amounts to extrapolate the corresponding critical couplings, β

(1)
c or β

(2)
c , to the limit Nt → ∞

at fixed N. The theory of dimensional cross-over [5] suggests the fitting function to be used:

β
(1,2)
c (Nt) = β

(1,2)
c, T=0− (NtaTc)

−1/ν , (3.1)

where β
(1,2)
c, T=0 and ν are the critical couplings and the critical index of the zero-temperature theory.

Since we know that, for any N, the 3D Z(N) LGT at zero-temperature exhibits only one phase tran-
sition, with the critical index ν depending on the side from which the transition is approached [3],
we expect that, for a given N, the fit parameters β

(1)
c, T=0 and β

(2)
c, T=0 take the same value and agree

with the zero-temperature critical coupling at the same N. As for the fit parameter ν , we expect
it to agree with the value of the critical index ν at one of the two sides of the zero-temperature
transition. We fitted with the function given in (3.1) our data for the critical couplings β

(1)
c (Nt)

at N=5 and for the critical couplings β
(2)
c (Nt) at N=5, 6, 8, 12, 13, 20 (see Table 3). In some

5
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Table 3: Results of the fit of β
(1)
c (Nt) for N = and of β

(2)
c (Nt) for N=5, 6, 8, 12, 13, 20 with the func-

tion (3.1). Parameters are given without errors when their values were fixed at the known results of the
T = 0 corresponding theory [3] (for the ν index we considered both the values at the left and at the right of
the T = 0 critical point). Parameters are given with a (-) mark when their errors are unavailable and with a ∗

mark when obtained from fits on data with Nt = 4, 8 only (in general, Nt = 2, 4, 8 were considered).

N aTc β
(1)
c, T=0 ν χ2

r

0.790(5) 2.198(9) 0.84(3) 1.21
0.764(14) 2.144(9) 0.670 23.1
0.758(16) 2.135(11) 0.640 33.6

5 0.786(7) 2.17961 0.788(10) 2.66
0.722(16) 2.17961 0.670 105
0.709(19) 2.17961 0.640 171

N aTc β
(2)
c, T=0 ν χ2

r

0.868(-) 2.23055(-) 0.877(-) -
0.813(27) 2.177(12) 0.670 158
0.803(30) 2.170(14) 0.640 223

5 0.825(38) 2.17961 0.692(45) 131
0.810(13) 2.17961 0.670 81.8
0.776(31)∗ 2.17961 0.670 74.2∗

0.789(17) 2.17961 0.640 161
0.731(18)∗ 2.17961 0.640 31.4∗

0.6814(-) 3.04317(-) 0.876(-) -
0.6769(76) 2.977(10) 0.674 5.02
0.6740(85) 2.969(12) 0.642 6.90

6 0.6832(46) 3.00683 0.768(15) 1.14
0.6573(47) 3.00683 0.674 22.6
0.572(13)∗ 3.00683 0.674 1.44∗

0.6487(60) 3.00683 0.642 40.6
0.542(21)∗ 3.00683 0.642 4.48∗

0.42330(-) 5.14422(-) 0.674(-) -
0.42378(12) 5.14299(25) 0.672 0.19
0.4316(22) 5.1225(46) 0.637 66.5

8 0.4294(12) 5.12829 0.648(6) 33.0
0.4287(39) 5.12829 0.672 321
0.4427(39)∗ 5.12829 0.672 177∗

0.4298(19) 5.12829 0.637 86.1
0.4216(10)∗ 5.12829 0.637 2.21∗

N aTc β
(2)
c, T=0 ν χ2

r

0.24728(-) 11.2566(-) 0.674(-) -
0.24559(13) 11.2640(23) 0.670 0.22
0.25615(72) 11.218(12) 0.640 6.18

12 0.2602(32) 11.1962 0.630(11) 14.2
0.24954(28) 11.1962 0.670 89.8
0.2619(87)∗ 11.1962 0.670 55.5∗

0.25742(10) 11.1962 0.640 12.7
0.2597(51)∗ 11.1962 0.640 21.3∗

0.22433(-) 13.1391(-) 0.654(-) -
0.21872(53) 13.1656(56) 0.671 5.88
0.22851(40) 13.1199(42) 0.642 3.40

13 0.2310(12) 13.1077 0.635(4) 8.86
0.2225(30) 13.1077 0.671 314
0.2342(62)∗ 13.1077 0.671 113∗

0.22928(67) 13.1077 0.642 16.0
0.2311(24)∗ 13.1077 0.642 19.2∗

0.144857(-) 30.5427(-) 0.608(-) -
0.1297(37) 30.73(10) 0.673 147
0.1356(24) 30.658(64) 0.647 58.8

20 0.1357(26) 30.6729 0.642(19) 58.2
0.13171(98) 30.6729 0.673 97.3
0.13199(13)∗ 30.6729 0.673 1.57∗

0.13506(54) 30.6729 0.647 31.0
0.13519(49)∗ 30.6729 0.647 23.9∗

cases in the fit we fixed either β
(1,2)
c, T=0 or ν , or both, at the values known from the zero-temperature

theory [3]. The scenario which emerges from the inspection of Tables 3 is that, despite the large
reduced chi-squared obtained in a few cases, the agreement between the fit parameters β

(1,2)
c, T=0 and

the known zero-temperature critical couplings [3] is satisfactory. As for the value of the fit parame-
ter ν , results are not precise enough to discriminate between the known values of the critical index
ν of the zero-temperature theory at one or the other side of the transition [3]. This analysis allows
us for the determination of the critical temperature aTc in the continuum limit for all the values of
N considered in this work.
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Some critical indices at the two transitions in the 3D Z(N) LGT at finite temperature can
be extracted by the standard FSS analysis. In particular, the behavior on the lattice size L of the
standard magnetization ML and of its susceptibility at the second transition allows to extract the
indices β/ν and γ/ν through a fit with the functions

ML = AMLL−β/ν , χML = AχML
Lγ/ν . (3.2)

Similarly, the behavior on L of the rotated magnetization MR and of its susceptibility at the first
transition point allow the extraction of the same critical indices at that transition. Thereafter, the
hyperscaling relation 2β/ν + γ/ν = 2 can be checked and the magnetic index η = 2− γ/ν can be
extracted at both transitions. Our results are reported in Ref. [7] and show that the hyperscaling
relation is generally satisfied and the critical index η generally takes values compatible with 1/4 at
the second transition and with 4/N2 at the first transition, in agreement with the expectations.

4. Summary

This paper completes our study of the critical behavior of 3D Z(N > 4) lattice gauge the-
ories both at finite temperatures. We have found that in all Z(N) vector models two BKT-like
phase transitions occur at finite temperatures if N > 4. In all cases studied, the results for the crit-
ical indices suggest that finite-temperature Z(N) lattice models belong to the universality class of
two-dimensional Z(N) vector spin models, in agreement with the Svetitsky-Yaffe conjecture. Fur-
thermore, the available results for many values of N allowed us to propose and check some scaling
formulas for the critical point of the second phase transition. Combining the results of the present
paper with those for the index ν obtained by us at zero temperature in Ref. [3] enabled us to check
the continuum scaling and to predict the approximate value for aTc in the continuum limit.
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