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1. Introduction

"Massless up quark" seems a simple solution to the strong CP problem, but such a possibility
is claimed to be already ruled out by the analysis based on lattice QCD simulations[1]. One of
the present authors, however, has argued that a concept of massless up quark is ambiguous if all
other quarks are massive[2, 3, 4, 5, 6], since no chiral symmetry which guarantees masslessness of
up quark exists in this case due to the chiral anomaly. Moreover there appears so-called a Dashen
phase[7], where the CP symmetry is spontaneously broken, and the neutral pion becomes massless
at the phase boundaries, so that the topological susceptibility diverges there.

In this report, we investigate above properties in 2-flavor QCD with non-degenerate quark
masses, employing the chiral perturbation theory (ChPT) including the η meson with anomaly
effects[8]. Our ChPT analysis explicitly confirms the above-mentioned properties. We also analyze
the case that mu = md = m but θ = π , equivalently mu = −md with θ = 0, where mu and md

are up and down quark masses, respectively. We show, deep in the CP violating phase with the
η condensation, that three pions becomes Nambu-Goldstone (NG) bosons with the non-standard
behavior as m2

π = O(m2), which is, however, consistent with the chiral Ward-Takahashi identities
(WTI).

2. Phase structure and pion masses

2.1 ChPT with η and anomaly

We introduce the anomaly into the ChPT at leading order (LO) as

L =
f 2

2
tr
(
∂µU∂

µU†)− 1
2

tr
(
M†U +U†M

)
− ∆

2
(
det U +det U†) , (2.1)

where f is the pion decay constant, M is the quark mass matrix, a field U ∈U(N f ) contains the
flavor singlet η meson as well as the on-singlet pions, and a positive constant ∆ gives an additional
mass to the η . For simplicity, det U terms with derivatives are neglected here since they do not
change our main conclusions.

Assuming that quarks belong to the fundamental representation of SU(Nc) color gauge group,

the large Nc argument[9, 10, 11, 12] leads to the
∆

Nc
(logdet U)2 term instead of the third term in the

above. Rigorously speaking, however, it s impossible to uniquely determine the form of anomaly
term in ChPT from the large Nc argument, since the fundamental and the 2-index anti-symmetric
representations are identical at Nc = 3 but give very different anomaly terms in the large Nc limit.
Therefore we use the above form for simplicity but also check our results with (logdet U)2.

2.2 Warm-up: N f = 1 case

As a warm-up example, let us consider the N f = 1 case. Since there is only one pseudo-scalar
meson (η) which stays massive due to the anomaly, one may naively guess

m2
PS =

|m|
f 2 +δm2 (2.2)
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where δm2 is a positive constant and m is the quark mass. This behavior, however, is incorrect, and
the correct one is given as follows.

By minimizing the potential with the vacuum ansatz that U(x) = U0 = eiϕ0 , we obtain

ϕ0 =

{
0, m+∆ > 0
π, m+∆ < 0

, (2.3)

and in terms of the fluctuation around this vacuum that U(x) = U0eiπ(x)/ f , we have

L =
1
2
[
∂µπ(x)∂ µ

π +m2
PSπ(x)2]+O(π4), m2

PS ≡
|m+∆|

f 2 , (2.4)

which shows that m2
PS is non-symmetric under m →−m and becomes zero at m =−∆.

2.3 N f = 2 case

For N f = 2, without a loss of generality, the mass term is taken as

M = eiθ

(
mu 0
0 md

)
≡ eiθ 2B

(
m0u 0
0 m0d

)
, (2.5)

where B is a positive and mass-independent constant related to the chiral condensate in the massless
limit, m0u,0d are bare quark masses, and θ corresponds to the vacuum angle of QCD. We take θ = 0
unless otherwise stated.

Minimizing the potential with the ansatz

U(x) = U0 = eiϕ0

(
eiϕ3 0
0 e−iϕ3

)
, (2.6)

we obtain the phase structure in Fig. 1, which is symmetric with respect to m+ ≡mu +md = 0 axis
an m− ≡ md −mu = 0 axis, separately.

In the phase A, U0 = 12×2 (upper right) or U0 = −12×2 (lower left), while in the phase C,
U0 = τ3 (lower right) or U0 = −τ3 (upper left). Note that the phase C does not exist if we use
(logdet U)2 for the anomaly term, so that an appearance of the phase C could be an artifact of
det U term in eq. (2.1). In the phase B, on the other hand, nontrivial minimum appears as

sin2(ϕ3) =
(md −mu)2{(mu +md)2∆2−m2

um2
d}

4m3
um3

d
(2.7)

sin2(ϕ0) =
(mu +md)2∆2−m2

um2
d

4mumd∆2 , (2.8)

which breaks CP symmetry spontaneously, leading to the Dashen phase[7], whose boundaries cor-
respond to the 2nd-order phase transition lines. Conditions that (md + mu)∆ + mdmu = 0 (a line
aa′) and (md +mu)∆−mdmu = 0 (a line bb′) determine lines between phase A and phase B, while
those between B and C, on which sin2

ϕ3 = sin2
ϕ0 = 1, are given by (md −mu)∆ + mdmu = 0 (a

line ab) and (md −mu)∆−mdmu = 0 (a line a′b′).
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Figure 1: Phase structure in mu-md plain, where the CP breaking Dashen phase are shaded in blue, while
the CP preserving phase with U0 = τ3 (lower right) or U0 =−τ3 (upper left) are shaded in red.

Let consider PS mesons, described by U(x) = U0eiΠ(x)/ f with

Π(x) =


η(x)+π0(x)√

2
π−(x)

π+(x)
η(x)+π0(x)√

2

 , (2.9)

whose masses are given by

m2
π± =

m+(~ϕ)
2 f 2 , m2

π̃0 =
1

2 f 2 [m+(~ϕ)+δm−X ] , m2
η̃ =

1
2 f 2 [m+(~ϕ)+δm+X ] , (2.10)

where X =
√

m(~ϕ)2 +(δm)2, δm = 2∆cos(ϕ0), and m±(~ϕ) = md cos(ϕ0−ϕ3)±mu cos(ϕ0 +ϕ3).

Note that an inequality mπ̃0 ≤mπ± is always satisfied. It is easy to see that m2
π̃0 = 0 at all boundaries

of the Dashen phase, showing that the phase transition is of second order.
In this section we have shown that (1) the spontaneous CP violating phase (Dashen phase)

by the pion condensation appears in non-degenerate 2-flavor QCD, (2) the massless neutral pion
appears at the phase boundaries, and (3) nothing special happen at mu = 0 as long as md 6= 0.

3. Topological susceptibility and massless up quark

In ref. [2, 3, 4, 6], it is also claimed that χ = ∞ at the phase boundaries while χ = 0 at mu = 0
for non-zero md , where

χ ≡
∫

d4x〈q(x)q(0)〉 (3.1)

is the topological susceptibility, and q(x) is the topological charge density. In this section, we
confirm this claim using our ChPT analysis.
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In our ChPT, the topological charge density is expressed as

2N f q(x) = ∆
{

det U(x)−det U†(x)
}

, (3.2)

while the topological susceptibility is given by

2N f χ =
∆2

4

∫
d4x〈

{
det U(x)−det U†(x)

}{
det U(0)−det U†(0)

}
〉+ ∆

2
〈det U(0)−det U†(0)〉,

(3.3)
where the second term represents an effect of the contact term in the chiral WTI[8]. For this
formula, we obtain

2N f χ =− 4∆2m+(~ϕ)
m2

+(~ϕ)−m2
−(~ϕ)+2m+(~ϕ)δm

+∆. (3.4)

At mu = 0, we have m+(~ϕ) = m−(~ϕ) = md and δm = 2∆, which lead to

2N f χ =−4∆2md

4md∆
+∆ = 0, (3.5)

showing that the contact term is required to make χ vanish at mu = 0. On the other hand, at
m2

π0 → 0, the denominator of eq. (3.4) vanishes, so that χ → ∞. We thus confirm that the claim
mentioned in the beginning of this section.

4. An interesting application: Degenerate 2-flavor QCD at θ = π

As an application of our analysis, let us consider the 2-flavor QCD with mu = md = m but
θ = π , which is shown to equivalent to the mu = −md with θ = 0 by the chiral rotation. Both
systems have a SU(2) symmetry generated by {τ1,τ2,τ3} for the former or {τ1γ5,τ

2γ5,τ
3} for the

latter. In this section, we analyze the former system but a reinterpretation of results for the latter
case is easy.

In this case, the vacuum expectation values are given by

〈ψ̄iγ5ψ〉 =

 0, m2 ≥ 4∆2

±2

√
1− m2

4∆2 , m2 < 4∆2
, (4.1)

〈ψ̄ψ〉 =


2, 2∆ ≤ m
m
∆

, −2∆ < m < 2∆

−2, m ≤−2∆

, (4.2)

showing the spontaneous CP symmetry breaking at m2 < 4∆2 by the η condensation. Note that
if (logdet U)2 term were used for the anomaly, the CP symmetry would always be spontaneously
broken: The phase transition point at m2 = 4∆2 in the above would move to m2 = ∞.

The PS meson masses are given by

m2
π = m2

π± = m2
π0

=


1

2 f 2 2|m|, m2 ≥ 4∆2

1
2 f 2

m2

∆
, m2 < 4∆2

, (4.3)
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m2
η =


1

2 f 2 [2|m|−4∆] , m2 ≥ 4∆2

1
2 f 2

4∆2−m2

∆
, m2 < 4∆2

, (4.4)

where the η meson becomes massless at the phase boundaries at m2 = 4∆2. The above mass
formulae show that η is the massless mode associated with the spontaneous CP violating phase
transition while three pions becomes massless NG boson at m = 0, as given in Fig. 2.
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Figure 2: m2
π (blue) and m2

η (red) in unit of
∆

f 2 as a function of m.

Although the results near the phase transition point around m2 = 4∆2 may strongly depend on
the choice of the anomaly term in our ChPT, properties near m = 0 can be trusted. Namely, the CP
symmetry is spontaneously broken due to the η condensation and three pions become massless NG
bosons at m = 0. It is noted, however, that pion masses behave as m2

π = m2/(2 f 2∆) near m = 0,
in contrast to the standard PCAC relation that m2

π = |m|/(2 f 2). We now show that this behavior is
indeed derived by the WTI, which reads

m
∫

d4x trτ
3(U†−U)(x)trτ

3(U†−U)(y)〉 = −2〈tr(U +U†)(y)〉. (4.5)

From this we obtain
m2

π0
=

m
f 2 cosϕ0 =

m
f 2

m
2∆

, (4.6)

which tells us that one m comes explicitly from the WTI while the other m appears from 〈ψ̄ψ〉. It
is interesting but challenging to confirm this behavior by lattice QCD simulations with θ = π .

5. Conclusion

Using the ChPT including η and the anomaly effect, we have confirmed properties of QCD
claimed in Refs. [2, 3, 4, 5, 6]:

1. Nothing is singular at mu = 0 if md 6= 0 since no symmetry exists at this point.

6
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2. The neutral pion becomes massless at some non-zero values of mu, denoted as mu = m±
c .

3. The neutral pion condensates ( 〈π0〉 6= 0 ) at m−
c < mu < m+

c , showing that the CP symmetry
is spontaneously broken ( the Dashen phase ). Since m±

c < 0 for md > 0, the Dashen phase
can not be investigated by the staggered quarks with the rooted trick.

4. The topological susceptibility diverges at mµ = m±
c .

5. The topological susceptibility vanishes at mu = 0, which may give a solution to the strong
CP problem.

In addition, we have made new predictions for 2-flavor QCD with mu = md but θ = π as
follows.

1. The spontaneous CP violation occurs as 〈η〉 6= 0.

2. The WTI implies non-standard PCAC relation that m2
π ∝ m2

q.
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