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1. Introduction

Topology freezing or fixing are important issues in quantum field theory, in particular in QCD.

For example Monte Carlo simulations with a local update algorithm tend to be stuck in a single

topological sector at lattice spacings a . 0.05fm, which are nowadays still rather fine, but realistic

[1]. Similarly, when simulating chirally symmetric overlap quarks, the corresponding algorithms

are not able to generate transitions between different topological sectors (cf. e.g. [2]).

In view of these issues it is important to develop methods, which allow us to obtain physically

meaningful results (i.e. results corresponding to unfixed topology) from fixed topology simulations.

The starting point for our work are the seminal papers [3, 4]. The calculations from these papers

have been extended in [5, 6] by including fixed topology correction terms up to O(1/V 3). Tests and

applications of these equations to quantum mechanics, 2d O(3) model and the Schwinger model

can be found in [7, 8, 9, 10, 5, 11, 6, 12]. Here we discuss parity mixing due to topology fixing

and its consequences, when extracting hadron masses from fixed topology simulations. We also

present results on SU(2) Yang-Mills theory.

2. BCNW equation and extensions

2.1 BCNW equation and extraction of hadron masses from fixed topology simulations

The partition function and the two-point correlation function of a hadron creation operator O

at fixed topological charge Q and finite spacetime volume V are

ZQ,V =

ˆ

DADψ Dψ̄ δQ,Q[A]e
−SE [A,ψ̄,ψ ]

CQ,V (t) =
1

ZQ,V

ˆ

DADψ Dψ̄ δQ,Q[A]O
†(t)O(0)e−SE [A,ψ̄,ψ ].

(2.1)

For large V one can use a saddle point approximation and expand the correlation function [3],

CQ,V (t) = α(0)exp

(

−MH(0)t −
M

(2)
H (0)t

2χtV

(

1−
Q2

χtV

))

+O

(

1

χ2
t V 2

)

, (2.2)

where α(0) = α(θ = 0) is a constant, MH(0) = MH(θ = 0) the physical hadron mass (i.e. at

unfixed topology), θ denotes the QCD vacuum angle and χt the topological susceptibility. In the

following we will refer to this equation as BCNW equation1. In order to be a valid approximation,

certain conditions have to be fulfilled, e.g. 1/χtV ≪ 1, |Q|/χtV ≪ 1 and |M
(2)
H (0)t|/χtV ≪ 1. For

a detailed discussion cf. [6], Section 4.

A straightforward method to determine physical hadron masses (i.e. at unfixed topology) from

fixed topology simulations based on the BCNW equation has been proposed in [3]:

1. Perform simulations at fixed topology for different topological charges Q and spacetime

volumes V , for which the BCNW equation is a good approximation, i.e. where the above

mentioned conditions are fulfilled. Compute CQ,V (t) for each simulation.

2. Determine the physical hadron mass MH(0), M
(2)
H (0) and χt by fitting the BCNW equation

(2.2) to the numerical results for CQ,V (t) obtained in step 1.

1BCNW stands for R. Brower, S. Chandrasekharan, J. W. Negele and U.-J. Wiese
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2.2 Higher orders in 1/V

In the derivation of the BCNW equation (2.2) all fixed topology corrections proportional to

1/V have been taken into account as well as some proportional to 1/V 2. In [5, 6] we have extended

this expansion by including all terms of O(1/V 2) and O(1/V 3). While there are only 4 parame-

ters in the BCNW equation (α(0), MH(0), M
(2)
H (0) and χt ), there are 8 and 11 parameters in the

corresponding 1/V 2 and 1/V 3 versions, respectively. Such large numbers of unknown parameters

might lead to unstable fits, when using methods to determine MH(0) similar to that discussed in

Subsection 2.1. As a compromise between using higher orders at the one hand and stable fits on

the other hand we advocate to use the 1/V 3 version with the 4 parameters of the BCNW equation

only (the remaining 7 parameters are set to zero):

CQ,V (t) =
α(0)

√

1+M
(2)
H (0)t/χtV

exp

(

−MH(0)t −
1

χtV

(

1

1+M
(2)
H (0)t/χtV

−1

)

1

2
Q2

)

. (2.3)

A comparison of MH(0) determinations using this equation and the BCNW equation in quantum

mechanics suggests that it is advantageous to use (2.3) (cf. [6] for details).

2.3 Parity mixing

Parity P is not a symmetry at θ 6= 0. Therefore, states at θ 6= 0 cannot be classified according to

parity and it is not possible to construct two-point correlation functions Cθ ,V (t), where only P =−

or P = + states contribute. Similarly, CQ,V (t) contains contributions of states both with P = −

and P = +, since it is the Fourier transform of Cθ ,V (t). Consequently, one has to determine the

masses of P = − and P = + parity partners from the same two-point correlation functions. While

usually there are little problems for the lighter state (in the case of mesons typically the P = −

ground state), its parity partner (the P = + ground state) has to be treated as an excitation. To

precisely determine the mass of an excited state, a single correlator is in most cases not sufficient.

For example to extract a first excitation it is common to study at least a 2× 2 correlation matrix

formed by two hadron creation operators, which generate significant overlap to both the ground

state and the first excitation.

We discuss the determination of P = − and P = + parity partners from fixed topology com-

putations in a simple setup, a 2×2 correlation matrix

CQ,V (t) =

(

C−−
Q,V (t) C−+

Q,V (t)

C+−
Q,V (t) C++

Q,V (t)

)

, C
jk
Q,V (t)≡

1

ZQ,V

ˆ

DADψ Dψ̄ δQ,Q[A]O
†
j(t)Ok(0)e

−SE [A,ψ̄,ψ ]

(2.4)

with hadron creation operators O− and O+ generating at small θ mainly P =− and P = + states,

respectively. Without loss of generality we assume that the ground state at θ = 0 has P = −,

denoted by H−, and the first excitation has P =+, denoted by H+. Starting from the expression of

a correlation function at fixed θ , where we consider the two states H− and H+,

C
jk

θ ,V (t)Zθ ,V =
(

α
jk
− (θ ,Vs)e

−MH− (θ )t +α
jk
+ (θ ,Vs)e

−MH+ (θ )t
)

e−E0(θ ,Vs)T (2.5)

with the spatial volume Vs and the temporal extension T , one can derive the form of the four

elements of the fixed topology correlation matrix by applying the same techniques used to derive
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the BCNW equation [6]. Neglecting terms of O(1/V 2) the result is

C−−
Q,V (t) = a11e−MH− (0)t

(

1−
M

(2)
H−

(0)t

2χtV

)

+
b22

χtV
e−MH+ (0)t (2.6)

C−+
Q,V (t) =

iQa12

χtV
e−MH− (0)t +

iQb12

χtV
e−MH+ (0)t (2.7)

C+−
Q,V (t) =

iQa21

χtV
e−MH− (0)t +

iQb21

χtV
e−MH+ (0)t (2.8)

C++
Q,V (t) =

a22

χtV
e−MH− (0)t +b22e−MH+ (0)t

(

1−
M

(2)
H−

(0)t

2χtV

)

. (2.9)

The difficulties due to parity mixing, when trying to determine MH+ , are nicely illustrated by (2.9):

the contamination of C++
Q,V (t) by the P = − state is proportional by 1/V (and, therefore, might

be small), but the signal term is exponentially suppressed in t, proportional to e−(MH+ (0)−MH− (0))t ;

consequently, at large t the P = − state will inevitably dominate. As mentioned above, a possible

solution might be to determine MH−(0) and MH+(0) at the same time by fitting (2.6) to (2.9) to a

2×2 correlation matrix.

Of course, when one is only interested in MH− , the situation is much simpler. In particular

when MH− ≪ MH+ , the BCNW equation or its improved version (2.3) can be used in a straightfor-

ward way as discussed in Subsection 2.1. In the next section we will study Yang-Mills theory at

fixed topology following this strategy.

3. Computations in SU(2) Yang-Mills theory at fixed topology

3.1 Simulation setup

In the continuum the SU(2) Yang-Mills Lagrangian is

L (A) =
1

4g2
Fa

µνFa
µν . (3.1)

The corresponding lattice action we use is the standard plaquette action with β = 2.5, which

amounts to a lattice spacing a ≈ 0.073fm. We have generated gauge configurations for spacetime

volumes V̂ = V/a4 ∈ {144 , 154 , 164 , 184}. For each volume the static quark-antiquark potential

Vqq̄(r) for various quark-antiquark separations r = a,2a, . . . ,6a has been computed on 4000 gauge

configurations. For each of these gauge configurations the topological charge has been computed

using a cooling procedure explained in [13].

3.2 The static potential

To obtain the physical static potential from Wilson loop averages, separately computed in

different topological sectors Q ∈ {0 , 1 , . . . , 7} and volumes V̂ ∈ {144 , 154 , 164 , 184}, denoted by

〈WQ,V (r, t)〉, we proceed as sketched in Subsection 2.1 and discussed in detail in Section 5.3.4 of

[6].

• We perform χ2 minimizing fits of either the BCNW equation (2.2) or the corresponding im-

proved version (2.3) with respect to their parameters α(r), Vqq̄(r), V ′′
qq̄(r) (r = a,2a, . . . ,6a)

and χt to the numerical results for 〈WQ,V (r, t)〉.
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• We either perform a single combined fit to all considered separations r = a,2a, . . . ,6a or

six separate fits, one for each of the six separations. In the latter case one obtains also six

different results for the topological susceptibility χt .

• Since the validity of both the BCNW equation (2.2) and the corresponding improved ver-

sion (2.3) requires certain conditions (cf. Subsection 2.1), we include only Wilson loops

〈WQ,V (r, t)〉 with 1/χtV, |Q|/χtV < 1.0 in the fits.

In Figure 1 we compare the static potential obtained from fixed topology Wilson loops (using (2.3)

and a single combined fit) to the static potential computed without topology fixing (at V̂ = 184).

There is excellent agreement within statistical errors. Qualitatively identical results have been

obtained for the BCNW equation, or when performing six separate fits to the six separations.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6

V
q
q̄
a

r/a

0.3095

0.31

0.3105

6

unfixed topology V̂ = 184
fixed topology

Figure 1: Comparison of static potential results obtained from fixed topology Wilson loops (using (2.3) and

a single combined fit) and at unfixed topology (at V̂ = 184). Since unfixed and fixed topology results are

identical within statistical errors, they have slightly been shifted to the left and right, respectively, for better

visibility.

For |Q|= 0,1, . . .4 the obtained values for Vqq̄,Q,V (r = 6a) are plotted in Figure 2. We observe

a strong dependence of the static potential on the topological sector, which becomes increasingly

prominent for smaller spacetime volumes. The fixed topology static potential is expected to behave

as the exponent of the BCNW equation (2.2). The corresponding curves for Q = 0,1, . . .4 with

parameters Vqq̄(r = 6a), V ′′
qq̄(r = 6a) and χt determined by the previously discussed fits (using

(2.2) and a single combined fit) are also shown in Figure 2. One can clearly see that (2.2) nicely

describes the numerical results for Vqq̄,Q,V (r = 6a).

We conclude that one can obtain a correct and accurate physical static potential (corresponding

to unfixed topology) from Wilson loops separately computed in different topological sectors.

5
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Figure 2: The fixed topology static potential Vqq̄,Q,V (r = 6a) for various Q = 0,1, . . .4 as a function of 1/V̂

and the corresponding BCNW expansions.

3.3 The topological susceptibility

In Table 1 we present results for the topological susceptibility extracted from fixed topology

Wilson loops 〈WQ,V (r, t)〉. As explained in the previous section we have used either the BCNW

equation (2.2) or the improved version (2.3) and either a single fit to all considered separations

r = a,2a, . . . ,6a or six different fits, one for each of the six separations. In the latter case one

obtains also six different results for the topological susceptibility χt .

method r = a r = 2a r = 3a r = 4a r = 5a r = 6a

(2.2)c 8.8(0.5)

(2.2)s 8.8(0.5) 8.7(0.6) 8.6(0.7) 8.6(0.9) 8.8(1.0) 8.9(1.2)

(2.3)c 7.1(0.6)

(2.3)s 8.6(0.5) 8.2(0.7) 7.7(0.8) 7.3(0.9) 7.0(1.0) 6.7(1.1)

Table 1: Results for the topological susceptibility χta
4 ×105 from fixed topology computations of the static

potential Vqq̄(r) for various separations. In the column “method” the equation number of the expansion is

listed, “c” denotes a single combined fit for all separations and “s” denotes a separate fit for each separation.

As reference value from an unfixed topology computation we use χta
4 × 105 = (7.0± 0.9) [13].

Not all of the extracted χta
4 values perfectly agree with each other or with the result χta

4 =

7.0 × 10−5 from [13], which we take as reference value. There seems to be a slight tension in

form of ≈ 2σ discrepancies, when performing fits with the BCNW equation (2.2). The improved

version (2.3) gives slightly better results: the majority of the extracted values are less than 1σ

different from the unfixed topology reference value.

One might hope to further improve the results by imposing a stronger constraint, e.g. by using

only Wilson loops 〈WQ,V (r, t)〉 with 1/χtV, |Q|/χtV < 0.5. Indeed there is then consistency with
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the reference value χta
4 = 7.0×10−5, but the statistical errors are extremely large, of the order of

χta
4 itself or even larger.

We conclude that in principle one can extract the topological susceptibility in Yang-Mills

theory from the static potential at fixed topology. In practice, however, one needs rather precise

data.

4. Conclusion

We have extended equations from the literature [3, 4] relating two-point correlation functions

at fixed topology to physical hadron masses (i.e. hadron masses at unfixed topology). We have

also discussed the problem of parity mixing and consequences for the determination of masses of

heavier parity partners. Finally we have demonstrated in SU(2) Yang-Mills theory that one can

determine the static potential from Wilson loops computed in fixed topological sectors.
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