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We present a strategy for a non-perturbative determination of the finite renormalization constants
of the energy-momentum tensor in the SU(3) Yang-Mills theory. The computation is performed
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boundary conditions. We show accurate preliminary numerical data for values of the bare cou-
pling g2

0 ranging for 0 to 1.
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1. Introduction

The lattice regularization breaks the space-time symmetries of translations and rotations down
to discrete subgroups. The full group is then recovered in the limit of vanishing lattice spacing.
The energy-momentum tensor Tµν is a field that contains crucial information about the theory. The
spatial integral of T00 is the energy of the system, the integral of the T0k component is the charge of
translations in the spatial direction k̂, and the combination εi jkxiT0 j corresponds to rotations around
k̂. Furthermore, Tµν provides information about the thermodynamics of the quantum theory at finite
temperature. The 〈T00〉 and 〈Tkk〉 expectation values represent the energy density and the pressure,
respectively. In a moving reference frame, the entropy can be obtained from 〈T0k〉 [1].

At fixed lattice spacing the energy-momentum tensor can be defined in many different ways.
After renormalization all definitions differ by irrelevant terms that give vanishing contributions in
the continuum limit, and the correct Ward identities of translations and rotations are properly recov-
ered [2]. The traceless components of Tµν pick up ultraviolet finite multiplicative renormalization
factors that approaches 1 as the bare coupling constant g0→ 0.

The non-perturbative computation of the renormalization factors is a necessary step to per-
form the continuum limit extrapolation of correlators of the energy-momentum tensor obtained at
finite lattice spacing. In this talk we consider the SU(3) Yang-Mills theory on the lattice in four
dimensions, and we present an efficient technique to determine non-perturbatively the renormal-
ization constant ZT (g2

0) of the off-diagonal components of Tµν in a broad range of values of the
bare coupling g2

0, between 0 and 1. This method is based on the framework of shifted boundary
conditions [3, 4] where one considers the definition of a thermal quantum field theory in a moving
reference frame. Recently, the Wilson flow [5] has been suggested as an alternative method to
compute the renormalization constants of the energy-momentum tensor [6, 7].

2. Renormalization of the energy-momentum tensor

In this section we present a method to evaluate the renormalization constants of the traceless
components of the energy-momentum tensor on the lattice. We discuss the case of the SU(3)
Yang-Mills theory but the method can be generalized in a straightforward way to a generic gauge
symmetry group. The gauge field Uµ(x) ∈ SU(3) is defined on the links of a four dimensional
lattice L3×L0 and the interaction is described by the Wilson action

S[U ] =− 1
g2

0
∑

x,µν

ReTr[Uµ(x)Uν(x+ µ̂)U†
µ(x+ ν̂)U†

ν (x)] (2.1)

where g0 is the bare coupling. We impose periodic boundary conditions in the spatial directions
and shifted boundary conditions along the temporal direction, Uµ(L0,x) =Uµ(0,x−L0 ξ ), where
(L0/a)ξ is a vector with integer components and a is the lattice spacing. The partition function is
given by

Z(L0,ξ ) = ∏
x,µ

∫
dUµ(x) e−S[U ] = Tr[e−L0(H+iξ ·P)] (2.2)
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where H and P are the Hamiltonian and the total momentum operator, respectively. We consider
the clover definition of the energy-momentum tensor on the lattice [2]

Tµν =
1
g2

0

{
Fa

µαFa
να −

1
4

δµνFa
αβ

Fa
αβ

}
. (2.3)

The field strength tensor is defined as

Fa
µν(x) =−

i
4a2 Tr

{[
Qµν(x)−Qνµ(x)

]
T a

}
, (2.4)

where T a = λ a/2 with λ a being the Gell-Mann matrices, and Qµν(x) is defined as follows

Qµν(x) = Pµν(x)+Pν−µ(x)+P−µ−ν(x)+P−νµ(x) . (2.5)

The matrix Pµν(x) is the parallel transport along an elementary plaquette at the lattice site x along
the directions µ and ν , and the minus sign stands for the negative orientation. The diagonal and
the off-diagonal components of the traceless part of the energy-momentum tensor renormalize
multiplicatively as [2]

T R
µν = ZT (g2

0) Tµν , T R
µµ −T R

νν = Zd(g2
0) (Tµµ −Tνν) with µ 6= ν , (2.6)

where no summation is performed on the double indices µµ and νν . The renormalization factors
ZT (g2

0) and Zd(g2
0) depend on the bare coupling only. Their values at one loop in perturbation

theory are [9]

ZT (g2
0) = 1+0.27076 g2

0 + . . . Zd(g2
0) = 1+0.24068 g2

0 + . . . (2.7)

Since
∫

d3xT0k is the charge of translation invariance, the expectation value of the renormalized
operator 〈T R

0k〉 can be can be directly obtained from eq. (2.2)

〈T R
0k〉=

1
L3L0

∂

∂ξk
logZ(L0,ξ ). (2.8)

We can then use eq. (2.6) and eq. (2.8) to compute the renormalization factor of the off-diagonal
components of the energy momentum tensor as [10]

ZT (g2
0) =

1
L3L0

∂

∂ξk
logZ(L0,ξ )

〈T0k〉
(2.9)

Note that 〈T0k〉 is measured using shifted boundary conditions with shift ξ . A similar method,
defined in the framework of shifted boundary conditions, has been considered in [8]. In the limit of
infinite spatial volume, the renormalized space-time components of the energy-momentum tensor
are also related to the following combination of the diagonal components [4]

〈T R
0k〉=

ξk

1−ξ 2
k
〈T R

00−T R
kk〉. (2.10)

Using eq. (2.6), we can now evaluate the renormalization factor of the diagonal components by

zT (g2
0) =

Zd(g2
0)

ZT (g2
0)

=
1−ξ 2

k
ξk

〈T0k〉
〈T00−Tkk〉

. (2.11)

This equation holds exactly also in finite volume for specific values of spatial lengths and shifts [4].
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3. Numerical computation of ZT (g2
0)

In this section we present the results of the numerical study to compute the renormalization
factor ZT (g2

0) of the off-diagonal components of the energy-momentum tensor using eq. (2.9). We
discretize the derivative and we write

ZT (g2
0) =

1
2aL3

logZ(L0,ξ +a/L0k̂)− logZ(L0,ξ −a/L0k̂)
〈T0k〉

. (3.1)

As in any non-perturbative renormalization condition, the r.h.s. of the formula above has discretiza-
tion effects. The corrections depending on a/L and a/L0 can be removed by taking the limits L→∞

and L0→ ∞. As we shall see, those corrections turn out to be very small. The non-trivial part in
applying eq. (3.1) is the measurement of the numerator: it corresponds to measuring the ratio of
two partition functions with different shifts at the same value of L0 and g2

0. That calculation cannot
be performed in a single Monte Carlo simulation due to the very poor overlap of the relevant phase
space of the two integrals. In this case we have used the Monte Carlo procedure of Refs. [11, 12, 3].
We consider a set of (n+ 1) systems with action S[U,ri] = riS[U (ξ−a/L0k̂)]+ (1− ri)S[U (ξ+a/L0k̂)]

(ri = i/n, i = 0,1, . . . ,n), where the superscript indicates the shift in the boundary conditions. The
relevant phase space of two successive systems with ri and ri+1 is very similar and the ratio of
their partition functions, Z (β ,ri)/Z (β ,ri+1), can be efficiently measured as the expectation value
of the observable O(U,ri+1) = exp(S[U,ri+1]−S[U,ri]) on the ensemble of gauge configurations
generated with the action S(U,ri+1). The discrete derivative is then written as

1
2a

log
Z(L0,ξ +a/L0k̂)
Z(L0,ξ −a/L0k̂)

=
1
2a

n−1

∑
i=0

log
Z (β ,ri)

Z (β ,ri+1)
. (3.2)

The calculation of the r.h.s. becomes quickly demanding for large spatial volumes. We have
performed numerical simulations with L = 12 and 16.

However, there is an alternative and more efficient method to compute the ratio of the two
partition functions. Calling f (L,L0,ξ ,g2

0) the l.h.s. of eq. (3.2), we rewrite it as

f (L,L0,ξ ,g2
0)= c0+

∫ g2
0

0

∂

∂x
f (L,L0,ξ ,x) dx= c0+

∫ g2
0

0

dx
x
(〈S[U,ξ +a/L0k̂]〉−〈S[U,ξ−a/L0k̂]〉)

(3.3)
where c0 = f (L,L0,ξ ,0) is known analytically. Although the two v.e.v.’s on the r.h.s. are fairly
close, their difference can be computed at a few permille accuracy with very moderate numerical
resources. The integral is also well-behaved around g2

0 = 0: one can show that the difference of
the two v.e.v.’s vanishes at leading order in perturbation theory. Finally, it is important to notice
that the spatial size is no longer a problem in computing f (L,L0,ξ ,g2

0) with eq. (3.3). In fact, the
increase of the computational effort due to larger spatial volumes is compensated by the reduction
of the statistical uncertainty in the measurement of the two v.e.v.’s.

We have performed numerical simulations with shift ξ = (1,0,0) on lattices with spatial size
L= 48. In figure 1, we plot (〈S[U,ξ +a/L0k̂]〉−〈S[U,ξ−a/L0k̂]〉)/g2

0 as a function of g2
0. Red and

green symbols refer to L0 = 3 and L0 = 4, respectively. Monte Carlo simulations are in progress
for L0 = 5. In figure 2 we show the dependence of 〈T0k〉 on g2

0; the data have been normalized
by |d0|, where d0 is the value of 〈T0k〉 at g2

0 = 0 and it has been computed analytically [4]. The
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Figure 1: The dependence of (〈S[U,ξ +a/L0k̂]〉−〈S[U,ξ −a/L0k̂]〉)/g2
0 on the bare coupling g2

0. The data
have been produced for L0 = 3 and L0 = 4 with shift ξ = (1,0,0).
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Figure 2: The dependence of 〈T0k〉 on the bare coupling g2
0 for L0 = 3,4 and 5. The data are normalized by

|d0|, where d0 is the value of 〈T0k〉 at g2
0 = 0. The value of the shift is ξ = (1,0,0).

integral of eq. (3.3) is performed by numerical integration and then, by taking the ratio with 〈T0k〉,
one can obtain the dependence of ZT (g2

0) on g2
0. The data are shifted by −c0/d0 + 1 in order to

reduce the corrections in a/L and a/L0. The results are plotted in figure 3 and show almost no
dependence on L0; also the discretization effects in L are smaller than the statistical errors. In order
to have a check of the reliability of the method, we have performed the above described calculation
of ZT (g2

0) on a lattice with spatial size L = 16 and L0 = 3. These data – shown using the red and
green lines in figure 4 – can be directly compared with those produced at L = 16 using eq. (3.2)
which are plotted with the black symbols. The cyan and purple symbols correspond to data still
obtained with eq. (3.2) at L = 16 but with L0 = 5 and 6, respectively. These two sets show that the
dependence on a/L0 is not visible within the numerical accuracy. Finally, as a further check, we
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Figure 3: The renormalization factor ZT (g2
0) of the off-diagonal components of the energy-momentum

tensor as a function of the bare coupling g2
0. The red and green data correspond to L0 = 3 and 4, respectively.

have computed the perturbative expansion of ZT (g2
0) at two loops using the method of Numerical

Stochastic Perturbation Theory [13] at L = 24 and 48. These latter results, show evidence both for
strong finite size effects and for large corrections due to high-order terms and to non-perturbative
contributions.
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Figure 4: Comparison of different methods to compute the renormalization factor ZT (g2
0) as a function of

the bare coupling g2
0. The red and green curves are generated using eq. (3.3) on lattices with spatial size

L = 48 and 16, respectively, and temporal size L0 = 3. The black, cyan and purple symbols are produced
using eq. (3.2) at L = 16 and L0 = 3, 5 and 6 respectively. The two-loop perturbative expansion are shown
in pink and blue for L = 24 and 48.
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4. Conclusions

In this talk we have presented preliminary results for the computation of the renormalization
factor of the energy-momentum tensor in SU(3) Yang-Mills theory. We propose a method that
allows to attain an accuracy of a few permille in a broad range of values of the bare coupling g2

0,
between 0 and 1 with a moderate numerical effort. The calculation of the renormalization factor
is an important input for extracting physically relevant information from the energy-momentum
tensor in a Monte Carlo simulation on the lattice.
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