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Global topological charge decorrelates very slowly or even freezes in fine lattice simulations.
On the other hand, its local fluctuations are expected to survive and lead to the correct physical
results as long as the volume is large enough. We investigate this issue on recently generated
configurations including dynamical domain-wall fermions at lattice spacings a = 0.08 fm and
finer. We utilize the Yang-Mills gradient flow to define the topological charge density operator and
calculate its long-distance correlation, through which we propose a new method for extracting the
topological susceptibility in a sub-volume. This method takes care of the finite volume correction,
which reduces the bias caused by the global topological charge. Our lattice data clearly show a
shorter auto-correlation time than that of the naive definition using the whole lattice, and are
less sensitive to the global topological history. Numerical results show a clear sea-quark mass
dependence, which agrees well with the prediction of chiral perturbation theory.
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1. Introduction

The configuration space of continuum QCD is not smoothly connected, and divided into sec-
tors characterized by the global topological charge Q. They are separated by infinitely high barriers
of the gauge action. On the lattice, the barriers become finite, and the Monte Carlo simulation can
sample the configurations at different topological charges. As approaching the continuum limit,
however, the barriers grow rapidly so that the hybrid Monte Carlo updates cannot frequently go
across these topological boundaries. As a consequence, the auto-correlation time of topological
charge becomes very long already at a lattice spacing a ∼ 0.05 fm [1, 2].

In our previous simulations [3, 4, 5] with the overlap quarks, we took this property as an ad-
vantage and performed the QCD simulations in fixed topological sectors. Avoiding the topological
boundaries is effective to reduce the numerical cost for the overlap quark determinant which has
discontinuities on the boundaries. This can be achieved by introducing an extra Wilson fermion
determinant with a negative cut-off scale mass, which prevents the index of the overlap operator
to change along the Monte Carlo history [6]. We developed a method to correct the fixed topol-
ogy effects, and succeeded in extracting the topological susceptibility from the local topological
fluctuation in the simulation with a fixed global topological charge [3, 4].

We have recently launched a new project of simulating QCD with chiral fermions on finer and
larger lattices [7]. Our goal is to cover the lattice size of around 2.5–4 fm with the cut-off 1/a ∼
2.4–4.5 GeV. We employ the Möbius domain-wall fermions [8] which is numerically less expensive
than the overlap fermions, while keeping the violation of the Ginsparg Wilson relation still small
at the 0.1% level compared to the cut-off. It turned out that this size of violation is sufficient
to smooth out the quark determinant and the hybrid Monte Carlo has no obstacle in crossing the
barriers. The problem of the long autocorrelation time exists as with other fermion formulations
since the topology barriers due to the gauge action remains.

Since the effect of the global topological charge is nothing but a finite volume effect [9, 10],
once it is removed, the auto-correlation associated with it could also be removed. Since the physical
effect of the topological charge should be found in its local excitations, in this work, we consider
the local fluctuation of topology, using the topological charge density operator constructed via the
gauge links after performing the Wilson flow. As shown in Ref. [11], gluonic quantities after the
gradient flow are free from UV divergences, and the gluonic definition of the topological charge
density is closer to the continuum limit as the gauge fields become smoother after the flow.

With this gluonic construction, we propose a new method for extracting the topological suscep-
tibility. Its definition is given in a sub-volume, and contains an 1/V correction term, to reduce the
bias caused by the global topological charge. Our lattice data show a much shorter auto-correlation
time than that of the naive calculation of the topological susceptibility summed over the whole
lattice sites. We also find that our data indeed cancel the bias from the global topological charge.
Moreover, the numerical results show a clear sea-quark mass dependence, which agrees well with
the prediction of chiral perturbation theory.

2. A new method for extracting the topological susceptibility

In a finite volume V the effect of the global topological charge Q to any quantity is given by a
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series of Q2/V , as well as 1/χtV provided that the volume is sufficiently larger than the inverse of
the topological susceptibility χt . More explicitly, the expectation value of any CP-even operator O
in a fixed topological sector of Q can be expressed by a series [9, 10]

⟨O⟩Q = ⟨O⟩θ=0 +
∂ 2

∂θ 2 ⟨O⟩θ

∣∣∣∣
θ=0

× 1
2χtV

[
1− Q2

χtV

]
+ · · · , (2.1)

when χtV ≫ 1. This is intuitively understood from the clustering property of quantum field theory
that only nearby region can affect the local observables. Therefore, it is sufficient to measure
any physical observable in a sub-volume, as long as the size of the sub-volume is larger than the
correlation length of the system. Even the topological susceptibility is not an exception.

Suppose we have a good definition of the topological charge density operator q(x). The topo-
logical susceptibility is conventionally defined by

χt =
∫

d4x⟨q(x)q(0)⟩. (2.2)

Using the clustering property and the fact that the lowest energy state couples to q(x) is the eta-
prime meson (with the mass mη ′), one can truncate the integral at some radius rcut(> 1/mη ′):∫

|x|<rcut

d4x⟨q(x)q(0)⟩= χt +O(e−mη ′ rcut). (2.3)

When the configurations are generated in a fixed topological sector or in various sectors but
their distribution is rather biased, there are potential effects from the badly sampled Q as 1/V
corrections. Thus, it is better if one can subtract this correction in advance. Luckily, in the case of
topological susceptibility, one can uniquely determine this correction term with no free parameter
to tune. Namely, at long distances |x|> rcut, the correlator q(x)q(0) in the topological sector of Q
is determined purely by the finite volume effects due to Q [9],

⟨q(x)q(0)⟩Q ∼ 1
V

[
Q2

V
−χt

]
. (2.4)

Even when the sampling of the configuration has a bias in the global topological charge Q, its effect
can be subtracted, according to this formula. This is achieved by calculating

χ̄t =
V

V −Vsub

⟨∫
|x|<rcut

d4x q(x)q(0)− Vsub

V 2 Q2
⟩
, (2.5)

where Vsub is the volume of the sub-domain in the range |x| < rcut. Note that χt = χ̄t when the
sampling of the topology has no bias. Since χ̄t is defined in a sub-volume, we can use the trans-
lational invariance and average it over the whole volume, which reduces the statistical uncertainty,
and assures that the smooth limit lim

Vsub→V
χ̄t = χt even for finite statistics of the gauge samples.

We expect that χ̄t has a shorter auto-correlation time than χt for two reasons. First, the topo-
logical lump can freely go in and out of the sub-domain whose moving time-scale is reported to be
much shorter than Q [12]. Second, the bias from global topology history is removed in advance,
and the measurement should be insensitive to the (biased) history of the global topology.

The above observation is expected to be true only when we have a good definition of q(x). For
example, a naive pseudoscalar operator made from the plaquette on the generated configuration

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
3
2
3

Topology density correlator on dynamical domain-wall ensembles H. Fukaya

does not work very well. This is a part of the reason why conventionally the topological suscepti-
bility has been measured by the global topological charge as ⟨Q2⟩/V . In this work, we apply the
Wilson flow cooling and use a naive gluonic definition of the topological charge density after the
flow [11]. Any gluonic operator on the configurations cooled by the gradient flow has been shown
to be free from UV divergences [11]. Moreover, if the plaquette values become sufficiently smooth,
one can uniquely determine the global topological charge by a gluonic quantity. As we will see
below, q(x) after the gradient flow at the smearing range ∼ 0.5 fm shows the expected properties.

3. Lattice simulation and Yang-Mills gradient flow

For the configuration generation, we employ the Symanzik gauge action and the Möbius
domain-wall fermion action. The determinant of the Möbius domain-wall Dirac operator is equiv-
alent to that of an approximation of the overlap Dirac operator:

D(m) =
1+m

2
+

1−m
2

tanh(Ls tanh−1(2HT )), 2HT = γ5
2DW

2+DW
, (3.1)

where Ls is the size of 5-th direction, DW is the Wilson Dirac operator, and m is the quark mass.
We apply three steps of stout smearing of the gauge link before inserting it in the Dirac operator.

We carry out 2 + 1-flavor lattice QCD simulations on two different lattice volumes L3 ×
T (×Ls)=323 × 64(×12) and 483 × 96(×8), for which we set β = 4.17 and 4.35, respectively.
The lattice spacings are estimated to be 2.4 GeV and 3.6 GeV, respectively, and therefore, the two
lattices share a similar physical size. For the quark mass, we use two values of the strange quark
mass ms around its physical point, and 3–4 values of the up and down quark mass mud for each ms.
The lightest pion mass is around 220 MeV with our smallest value of mud = 0.0035.

For each configuration to be measured, we perform 500–1000 steps of the Wilson flow with a
step-size 0.01. Fig. 1 shows the Wilson flow time history of the gluonic definition of the topological
charge Q (left panel), and the average and maximum of sp = Re Tr[1−Up], where Up denotes
the plaquette (right panel). These plots represent typical 5 configurations generated at β = 4.17,
mud = 0.007, and ms = 0.030. It is known that if every plaquette satisfies the condition sp < 0.067,
there exists a well-defined topological charge [11]. As seen in the figure, after the flow time of
t = 5, the topological charge does not change, and the average of sp is well below the condition
0.067 (although a few plaquettes are still above this value).

The flow time t = 5 (for β = 4.17) corresponds to 1.4t0, where t0 is the reference scale ∼
0.0236 fm2. The smeared region is then around

√
8t ∼ 0.5 fm. We should, therefore, be able to

extract the local topological fluctuation when the sub-domain size is larger than 0.5 fm. In the
following analysis, we compute the topological density correlators at tref = 5 (for β = 4.17) and
tref = 10.8 (for β = 4.35 runs) whose physical sizes are roughly equal.

4. Preliminary results

First, we compute the topological charge density correlator ⟨q(x)q(0)⟩ at the Wilson flow time
tref as a function of |x| =

√
x2. Different points giving the same |x| are averaged. The left panel

of Fig. 2 shows the data from the β = 4.17 runs. The correlator has a positive core in the short
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Figure 1: Wilson flow history of the topological charge Q (left panel), and the average and maximum of sp

(right) for typical 5 configurations generated at β = 4.17, mud = 0.007, and ms = 0.030. At the flow time of
t = 5 (∼ 1.4t0), the topological charge is well saturated.

distance region, and goes to negative in the intermediate region, and comes back to around zero.
We find saturation (to zero) around |x|=1.5–2 fm. We therefore set rcut = 1.6 fm as the truncation
length for the topological susceptibility calculated using Eq. (2.5).

By also measuring Q = ∑x q(x), we divide the data into topological sectors and check their
Q2 dependence at long distances, which is predicted in Eq. (2.4). The right panel of Fig. 2 shows
its average in the range rcut < |x| < L. Note that the data at xµ > L/2 for any µ are not averaged
to avoid possible effects of the boundary. The expected dependence Q2/V 2 is clearly seen. We
emphasize that this quadratic function has no free parameter to tune. In this plot, we also draw
curves whose intercept is given by χ̄t determined below.

We are now ready for computing χ̄t in Eq. (2.5). Note that for our choice rcut = 1.6 fm,
Vsub/V ∼30 %. Namely, the instanton-like lump has enough space, 70% of the whole volume,
to escape. Here again the data at xµ > L/2 for any µ are not averaged to avoid the effect of the
boundary. As Fig. 3 shows, the Monte Carlo history of χ̄t (right panels) fluctuates more frequently
than the global topological charge (left panels). In the same panel, we also plot χ̄t without the
correction term from the global topological charge, which apparently shows a stronger correlation
with the global topological charge. Namely, this term plays the expected role of canceling the bias
from the global topology.

Moreover, as shown in Fig. 4, we find that the sea quark mass dependence of χ̄t agrees well
with the prediction from chiral perturbation theory,

χChPT
t =

Σ
1/mu +1/md +1/ms

, (4.1)

where Σ denotes the chiral condensate. We can even estimate the (bare) value of chiral condensate
as Σ = (250 MeV)3. Our definition χ̄t on the configurations generated by the Möbius domain-
wall fermions seems to correctly reflect the sea quark’s effect. This implies that the topological
fluctuation in our ensembles is just as expected from the effective theory approach. It should be
noted that χ̄t is constructed purely from gluonic quantities. The fermion loop effect is clearly
visible in the gauge sector, thanks to the clean signal after the Wilson flow and to the good chiral
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Figure 2: Topological charge density correlator (left panel) and its |Q|-dependence (right) in the long dis-
tance region rcut < |x|< L at β = 4.17.

symmetry of the Möbius domain-wall fermion.

Numerical simulations are performed on IBM System Blue Gene Solution at KEK under a
support of its Large Scale Simulation Program (Nos. 12/13-04 and 13/14-04). This work is sup-
ported in part by the Grand-in-Aid of the Japanese Ministry of Education (No.25800147, 26400259
26247043), the Grant-in-Aid for Scientific Research (B) (No. 25287046), and SPIRE (Strategic
Program for Innovative Research) Field 5.
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Figure 3: Monte Carlo history (solid lines) of the global topological charge (left) and our new definition
of the topological susceptibility χ̄t (right) at β = 4.17,mud = 0.012,ms = 0.040 (top) and β = 4.35,mud =

0.0080,ms = 0.0250 (bottom). We also plot χ̄t without the Q2/V correction term (dotted lines).
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