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1. The Model & Tensor Renormalization

In the following we consider the O(3) non-linear sigma model with Hamiltonian

H =−∑
〈i j〉

~Si ·~S j (1.1)

where~S is a three-component vector, and 〈i j〉 a sum over nearest-neighbor pairs on a two-dimensional
square lattice. The partition function is

Z(β ) = ∏
x

∫
dΩ(x)e−βH . (1.2)

The sum is over spin configurations on a two-dimensional lattice, and dΩ is the unit spherical area
element. This model is important for a number of reasons. Firstly, it has a non-Abelian global
symmetry. Second, the model has no spontaneous symmetry breaking (i.e. 〈~S〉 = 0 for all β ),
unlike the Ising model in two dimensions. Thirdly, this model is known to be asymptotically free
for large β . Lastly, the model also possesses instantons which are labeled by an integer topological
index.

The Tensor Renormalization Group (TRG) [1] is a renormalization group method developed
for classical statistical models. TRG consists of reformulating a classical partition function in terms
of local tensors. The techniques used here are similar to [2], which hinge on using Higher Order
Singular Value Decomposition (HOSVD), giving the renormalization group technique the name
Higher Order Tensor Renormalization Group (HOTRG). The methodology is as follows. First one
must form the initial tensor, or devise a tensor formulation for one’s model. Second, one performs a
blocking step. A blocking step includes contracting two tensors together, then using the HOSVD to
pick out the most relevant directions in renormalization group product space. Once we pick out the
relevant directions in renormalization group space, we project out those states to form a new tensor.
This process is illustrated in Figure 1. The tensor formulation allows one to decouple the lattice at
the location of the local constraint, in our case, the sites of the lattice. The lattice is then rebuilt by
piecing these tensors together geometrically in the shape of the lattice. The idea of contracting the
tensors to build up a lattice is shown in Figure 2.

1. 2. 3.

Figure 1: The steps involved in TRG blocking with truncation.
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∑

Figure 2: A graphical representation of building up the lattice by contracting tensors.

2. Tensor Formulation for O(3)

A simple approach to formulating the O(3) model in terms of tensors is through harmonic
analysis. O(3) has two quantum numbers: l and m. However the expansion coefficients, when ex-
panding in terms of Legendre polynomials, only depend on l. To proceed we expand the Boltzmann
weight in terms of Legendre polynomials

exp[β cosγi j] = ∑
l

Al(β )Pl(cosγi j). (2.1)

The relative size of the coefficients can be seen in Figure 3. Now

Pl(cosγi j) =
4π

2l +1 ∑
m

Ylm(θi,φi)Y ∗lm(θ j,φ j). (2.2)

This allows us to factorize the initial contribution from the links. With the angular dependence
decoupled, angular integration can now take place, and the theory can be written in terms of integer-
valued fields l, and m. The spherical harmonics are associated with pairs of sites, or links. Since
there are four impinging links per site on the lattice, the angular integration is built out of four
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Figure 3: The relative size of the weights as a function of total angular momentum number l
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lm

l′m′

l′′m′′

l′′′m′′′

∑
L,M

Figure 4: The local tensor for the O(3) model.

spherical harmonics. This integral is responsible for the constraint at a site and has the form∫
dΩ Y ∗lmY ∗l′m′Yl′′m′′Yl′′′m′′′(Ω) (2.3)

=

√
(2l +1)(2l′+1)(2l′′+1)(2l′′′+1)

4π

l+l′

∑
L=|l−l′|

1
(2L+1)

L

∑
M=−L

CLM
lml′m′C

L0
l0l′0CLM

l′′m′′l′′′m′′′C
L0
l′′0l′′′0.

(2.4)

This constraint enforces the triangle in-equalities between pairs of external legs of the tensor and
intermediate angular momentum quantum numbers. The intermediate sum over L and M picks out
irreducible representations of the angular momenta. A picture of how one might interpret the O(3)
tensor is shown in Figure 4. The tensor can be written down explicitly as

T(l,m)(l′m′)(l′′m′′)(l′′′m′′′)(β ,x) =
√

AlAl′Al′′Al′′′(β )C [(l,m)(l′m′)(l′′m′′)(l′′′m′′′),x] (2.5)

with C the constraint from before, and x the location on the lattice. This is in contrast with the
Abelian constraint, which simply demands a conservation of the integer-valued fields associated
with the links at their common site. From this tensor the entire partition function and the free
energy can be built up and thermodynamical quantities calculated.

3. n-point Correlations

n-point correlations can be realized on the lattice by inserting spin vectors at particular sites.
This comes from the typical expression for correlation functions

〈~S1~S2 . . .~Sn〉= ∏
x

∫
dΩ(x)(~S1~S2 . . .~Sn)e−βH . (3.1)

These additional spin vectors lead to a modified constraint at each site of insertion. This comes
about by expanding the Boltzmann weight as usual, however there are additional degrees of free-
dom to integrate due to the modified integrand. The integrand can be made more suitable for
integration by using the spherical basis,

Sµ =

√
4π

3
|S|Y1µ(θ ,φ), (3.2)
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impure tensor

Figure 5: The placement of an impure tensor in the lattice, and contracting using TRG. This represents
inserting an additional spin at this lattice location.

as a representation for the spin vectors. The angular integral that needs to be preformed at each site
of insertion now has the form∫

dΩ Yl1m1Yl2m2Y
∗
l3m3

Y ∗l4m4
Y1m(Ω) (3.3)

=

√
(2l1 +1)(2l2 +1)(2l3 +1)(2l4 +1)

4π
∑

LL′MM′
CL0

l10l20CLM
l1m1l2m2

CL′0
l30l40CL′M′

l3m3l4m4
(3.4)

× 1
(2L′+1)

CL′0
L010CL′M′

LM1m. (3.5)

This leads to a tensor whose elements are shifted, or an “impure” tensor. Average values are com-
puted by contracting these impure tensors with pure tensors using the same algorithmics. The
number of impure tensors used during the contraction pattern (and when applicable, their relative
separation) determines which n-point function one is computing, and what modes one is consider-
ing. For 2-point functions it is necessary to have a source and a sink, i.e. two impure tensors in the
lattice (in the absence of a magnetic field). A picture of the insertion of a spin into the lattice using
an impure tensor is shown in Figure 5.

4. Results

Here we report some of the results obtained during this study. While it has been shown that
TRG is able to reproduce numerical data comparable to Monte Carlo simulations for the O(2)
model [3], it was nevertheless important to cross check observables for O(3) since it has not been
done using TRG. In Figure 6 we show a comparison between Monte Carlo and TRG for the average
energy at finite volume. It was then best to use TRG to explore regions where Monte Carlo has
difficulty, namely, the infinite volume limit. In Figure 7 we see results for the infinite volume limit
for average energy and entropy. The number of states kept during iterations is given in terms of the
total angular momentum number lmax. For O(3) the number of states, D, in terms of lmax is given
by D = (lmax +1)2. Finally, in Figure 8 we see data from TRG for the 2-point correlation function
and the comparison to Table 2 in Ref. [4].
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Figure 6: The average energy on a 32×32 lattice using Monte Carlo and TRG.
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Figure 7: The average energy and entropy for the O(3) model at approximately infinite volume.
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Figure 8: A comparison to the literature using TRG. The left plot has the TRG data at a large number of
states, and the right plot shows the progression in the number of states compared to Table 2 in Ref. [4].
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5. Conclusion and Future Work

Tensor renormalization is a powerful method in 2D for extracting infinite volume thermody-
namics. However, it appears to give inaccurate results for 2-point correlation functions so far. TRG
appears insensitive to the sign problem [5] and computing in the infinite volume limit is as easy
as computing at finite volume, since if one can compute a single block-spin, one can compute any
number of them. It’s also possible to formulate many popular models in terms of tensors, and a
tensor formulation comes with a convenient graphical representation [6].

Another point of interest is the fact that particular tensor elements in the O(3) tensor formula-
tion are negative. It is unclear at this point if this formulation has negative weights for configura-
tions. Alternatively, there are reformulations of the O(3) model where all the weights are positive
definite [7]. It would be interesting to attempt other tensor formulations where one can be sure that
the weights are positive.

Understanding the systematic improvement of TRG and how the number of states kept during
iterations improves accuracy is also a point of interest. While ideally if one could keep all the
configurations of the system the results would be exact, one can only keep a finite amount, and it
becomes important to understand the optimal way to keep higher numbers of states. In terms of
scaling, TRG scales as D7 in CPU time in two-dimensions, and the memory scales as D4. Paral-
lelization of tensor contractions could help the D7 scaling.
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