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In the past few years, we have presented a new way of considering quark confinement. Through

a careful choice of a Cho-Duan-Ge Abelian Decomposition, we can construct the QCD Wilson

Loop in terms of an Abelian restricted field. The relationship between the QCD and restricted

string tensions is exact; and we do not need to gauge fix, apply any path ordering of gauge links,

or additional path integrals. This hints at why mesons are colour neutral.

Furthermore, the Abelian restricted field contains two parts: a Maxwell term, and a topological

term. The topological term can describe magnetic monopoles and other topological objects, which

can be studied both numerically and theoretically. By examining the topological part of the re-

stricted field strength we have found evidence suggesting that these objects, which will contribute

to confinement if present, are indeed there.

Previous studies have used simplifications, breaking the exact relationship between the restricted

and QCD string tensions, but it was found that the topological term dominated the restricted

string tension. Here we remove those simplifications, and show that the Abelian restricted field

does indeed fully explain confinement. However, our results for how much of the restricted string

tension arises from the topological objects show strong dependence on the lattice spacing and

level of smearing, so we are not yet able to draw a definitive conclusion.
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1. Introduction

Our previous studies [1], using the gauge invariant CDG (Cho-Duan-Ge) Abelian decompo-

sition [2] to study quark confinement, have shown that, by judicious choice of the colour field θ

that defines the decomposition, one can calculate the static potential of a Yang Mills gauge the-

ory entirely in terms of a ‘restricted’ Abelian field, which (unlike QED) may contain topological

objects such as magnetic monopoles. The Abelian restricted field is far easier to analyse than full

QCD. Abelian dominance is natural because it explains why only the Abelian gluons are related

to confinement (i.e. hadrons are colour neutral). Eventually, we intend to combine our lattice sim-

ulations with algebraic and numerical estimates of the free energy (following [3]) to show that

these topological objects are preferred below the de-confinement transition. Here we concentrate

on using numerical simulations to try to understand what causes confinement in the restricted the-

ory. Another research group is using the CDG decomposition to study confinement in lattice gauge

theories, but uses a different choice of decomposition [4].

The Abelian field contains two parts – the Maxwell term (similar to QED), which is directly

dependent on the QCD gauge field Aµ , and the topological term (absent in QED), which only

depends on Aµ indirectly through θ . A common understanding is that this θ field can describe

topological structures which might explain confinement. In analogy to QED, The Maxwell term

is not expected to contribute to confinement. Previous studies have tried to isolate the topological

part of the field and show its dominance (see, for example, [4, 5]). However, these studies have

all had the weakness that the link between the restricted string tension and the QCD string tension

is not exact. They have shown, in other words, that the restricted string tension is dominated by

the topological part, but it is unclear how much bearing this has on the problem of full QCD. On

the other hand, as far as we know for the first time, we here use a method which has an exact

algebraic identity between the restricted and QCD string tensions. The main purpose of this work

is to investigate whether the expected topological objects indeed dominate the string tension.

Section 2 outlines the theoretical basis of our work, section 3 presents our numerical results,

and section 4 concludes.

2. The Abelian decomposion

The CDG Abelian decomposition extracts an Abelian component from the gauge field. Unlike

other approaches, our method requires no gauge fixing, nor arbitrary cuts of the field, nor additional

path integrals. In the continuum, choose a field θ(x) ∈ SU(N) (we will explain how to select θ

later). Construct a rotated basis na = θλaθ†, with λa a Gell-Mann matrix. Pick out the Abelian

directions n j ≡ n3,n8, . . .. The decomposed fields Âµ and Xµ satisfy

Aµ =Âµ +Xµ Dµ [Â]n j =0 tr(n jXµ) =0. (2.1)

Â is known as the restricted field. There is a known solution [2],

Âµ =
1

2
n jtr(n jAµ)+

i

4g
[n j,∂µn j];

Fµν [Â] =
n j

2

[

∂µ tr(n jAν)−∂ν tr(n jAµ)
]

+
i

8g
n jtr(n j[∂µnk,∂νnk]). (2.2)
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The generalisation to the lattice is straight-forward. Starting with the gauge link Uµ ,x, we write

Uµ ,x = X̂µ ,xÛµ ,x, U,Û , X̂ ∈ SU(N)

Ûµ ,xn j,x+µ̂Û†
µ ,x −n j,x = 0 tr(n j,x(X̂µ ,x− X̂†

µ ,x)) = 0. (2.3)

If there are multiple solutions, we select the one with maximal tr X̂µ . Û corresponds to a gauge link

constructed from Â, and X̂ is related to X . If θ transforms under a gauge transformation as

Uµ ,x →ΛxUµ ,xΛ†
x+µ̂ θx →Λxθx, (2.4)

with Λx ∈ SU(N), then it is easy to find the transformations of Û and X̂

Ûµ ,x →ΛxÛµ ,xΛ†
x+µ̂ X̂µ ,x →ΛxX̂µ ,xΛ†

x . (2.5)

Paths of gauge links constructed from Û are gauge covariant: we do not need to gauge fix.

Our aim is to extract the static potential from the Wilson Loop. We choose θ so the Wilson

Loop for the restricted and QCD gauge fields are identical: for every link contributing to the Wilson

Loop Ûµ ≡ Uµ . We then extend θ across all space by considering nested and stacked sets of

Wilson Loops. This choice of θx contains the eigenvectors of the Wilson Loop starting and ending

at position x. It is unique up to a (U(1))N−1 transformation (which leaves n j invariant) and the

ordering of the eigenvectors. Note that this requires calculating a new θ field for each Wilson Loop

studied. The observed topological objects will depend on the Wilson Loop. From (2.3), (2.4) and

(2.5), θ†
x Ûµ ,xθx+µ̂ is Abelian and gauge invariant, so there is no need for path ordering or gauge

fixing. The coloured field X does not contribute to confinement, so mesons are colour-neutral.

Both Fµν [Â] and Âµ , defined in the continuum in equation (2.2), depend on two terms: (1) a

function of both Aµ and θ (the Maxwell term); and (2) a function of θ alone (the topological term).

We will denote the topological part of Fµν [Â] as H
j

µν ≡ i
8g

tr(n j[∂µnk,∂νnk]).

Any SU(2) matrix (the theory for SU(3) proceeds in a similar way, but is too cumbersome to

describe here) may be parametrised in terms of three variables 0 ≤ a ≤ π
2
,c ∈ R,d ∈ R

θ =

(

cosa isinaeic

isin ae−ic cosa

)(

eid 0

0 e−id

)

, φ̄ =

(

0 ieic

−ie−ic 0

)

.

d makes no contribution to n3 = θλ3θ†, so we can safely fix it to zero. The topological parts of Âµ

and Fµν [Â] are θ†∂µθ = λ3sin2 a∂µc+ φ̄ cos 2a∂µa and tr(n3[∂µn3,∂ν n3]) = ∂µa∂νc−∂νa∂µc.

Selecting our Wilson loop in the xt plane, we seek to map a and c to four dimensional Eu-

clidean space. c is undefined at a = 0 and a = π/2. Given that these are the maximum and

minimum values of a, the singularities should occur at points rather than lines or surfaces, sug-

gesting that it is advantageous to use a polar parametrisation of space-time. Keeping the rota-

tional symmetry in the yz plane manifest leaves two natural ways to parametrise the coordinates,

(t,x,y,z) = r(cos ψ3,sinψ3 cosψ2,sinψ3 sinψ2 cos ψ1,sin ψ3 sinψ2 sinψ1) and the system obtained

through t ↔ x. The object is centred at r = 0. There are two types of topological object available:

the Wang-Yu magnetic monopole (e.g. a = ψ1/2,c = νWY ψ2); and an object with π1 topology (e.g.

a(r,ψ1,ψ2,ψ3),c = νT ψ3). νWY and νT , invariant under continuous gauge transformations, are

integer winding numbers. Applying Stokes’ theorem to the Abelian representation of the Wilson

3
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Figure 1: The X (left) Y (middle) and Z (right) components of the Electric (top) and Magnetic (bottom)

Abelian Field Strengths. The contour plots show the field strength H8
µν (red contour lines positive field

strength, purple lines negative field strength) on a slice of the lattice in the XT plane (10 smearing sweeps).

Loop gives a surface integral over the continuous part of Fµν [Â] bound by line integrals around each

topological singularity. These line integrals (∼
∮

dxµ(sin2 a)∂µc) are proportional to the winding

number νT (the monopoles do not directly contribute). Since the number of these objects is pro-

portional to the area of the Wilson loop, this leads to a linear static potential [6].

One can calculate the field strength surrounding each of these topological objects. In analogy

to electromagnetism, we characterise H
j

µν in terms of ‘Electric’ and ‘Magnetic’ fields E j and B j.

The monopoles, with no contribution to the Ex field, have either 1-dimensional lines of high field

strength either in Bx, By and Bz parallel to the T axis or in Bx, Ey and Ez parallel to the X axis,

depending on the choice of coordinate parametrisation. The π1 objects, on the other hand, provide

us with point-like structures in the Ex field, accompanied by either 1-dimensional lines in Bx, By

and Bz parallel to the T axis; or lines in Bx, Ey and Ez parallel to the X axis. The two sets of

structures can only be distinguished by their contributions to the Ex field. We expect to see F
j

µν [Â]

and H
j

µν dominated by these two types of objects.

3. Numerical results

Our numerical simulations are carried out with a tadpole improved Luscher-Weisz gauge ac-

tion [7] in SU(3) quenched QCD at β = 8.0,8.3 and 8.52 and lattice spacings (measured from the

string tension) of around 0.14 fm, 0.11 fm, and 0.095 fm, with three ensembles on 163 ×32 lattices

and the β8.3L ensemble on a 203×40 lattice. The plots show data from the β = 8.52 ensemble; the

other ensembles show similar results. There is no noticeable difference between the field strengths

derived from λ 3 or λ 8. We applied stout smearing [8] at parameters ρ = 0.015, ε = 0.0 to smooth

the gauge field and remove dislocations before computing θ or the Wilson Loop. The results dis-

cussed here were based on either ten or sixteen smearing steps. We are currently investigating

different levels of smearing.
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Figure 2: The extent in each spatial direction of structures of connected high field strength for the H8
µν field.

Figure 1 shows a contour plot for the components of H8
µν , displaying the size and shape of the

structures. In accordance with our model, we see point like objects in the Ex component of the field,

and lines along either the t or x axis (or both) in the other components of the fields. We use a cluster

analysis to average geometric features across the whole ensemble. In figure 2, we find clusters of

connected sign-coherent high field strength, and measure how far these clusters extend in each

direction. The structures of high field strength are indeed orientated exclusively in the predicted

directions. We have also investigated the distribution of the number of nearest neighbours for each

lattice site within the cluster – these objects are one dimensional – and whether the peaks in the Ex

field are correlated with high field strengths in the other fields – they are [6]. Thus the patterns in

Hµν are consistent with a liquid of Wang-Yu monopoles and the π1 topological objects.

Neither the Maxwell nor topological parts are by themselves gauge invariant, but only their

sum. The winding numbers of the topological objects within θ are invariant under continuous

(differentiable with respect to the space/time coordinates) gauge transformations. However, ‘con-

tinuous gauge transformations’ are problematic on the lattice. Thus any lattice study which di-

rectly separates the topological from the Maxwell part of the restricted gauge field will be gauge-

dependent. Our alternative approach is described below. A preliminary investigation, which, like

the other studies of the topological dominance of the restricted field strength, broke the identity

between the restricted and original string tensions, confirmed the topological dominance found by

other methods [1]. To measure the topological part of the string tension, we use the field

ˆ̃As,µ =
n j

2
tr(n jÃs,µ)+

i

4g
[n j,∂µn j] (3.1)

We have replaced A with a highly smoothed stout-smeared [8] gauge field Ãs (calculated after s

additional smearing sweeps) while using the θ field derived from the original A. Enough smearing

should remove any contribution from Ãs, so only contributions from θ and a gauge transformation

remain. However, the string tension ρθ ,Ãs
calculated from ˆ̃As,µ depended on s even after 2500

5
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Figure 3: The static quark potential calculated using a T ×R Wilson Loop WL and the original (U), restricted

(Û), topological ( ˆ̃U) and smeared (Ũ) gauge fields (10 smearing sweeps).

β 8.0 8.3 8.52 8.3L 8.0 8.3 8.52

U 0.098(2) 0.060(1) 0.0420(8) 0.0598(8) 0.095(4) 0.074(2) 0.049(1)

Û 0.092(4) 0.058(2) 0.042(2) 0.063(3) 0.105(5) 0.079(2) 0.051(2)
ˆ̃U2500 0.038(1) 0.0256(9) 0.0221(7) 0.028(1) 0.038(2) 0.0335(10) 0.031(1)

ˆ̃U2500−Ũ2500

U
0.27(1) 0.28(1) 0.32(1) 0.32(2) 0.25(2) 0.31(2) 0.44(3)

Table 1: Our fits for the string tension after 10 (left) and 16 (right) initial smearing steps.

smearing sweeps. However, we found that for s between 600 and 2500, within our statistical errors

ρθ ,Ãs
= constant +ρÃs

, with ρÃs
the string tension calculated from the smeared Ãs field, allowing

an extrapolation to the point where the effects of Ã are negligible. The string tension is shown in

figure 3 and table 1. The bottom row of the table shows the ratio of the topological component of

the string tension and the full string tension. The static potential for the restricted and original

gauge fields are in good agreement (the difference is caused by different samples of Wilson Loops

used in the two measurements). However, while the topological field contributes to the overall

string tension, the contribution is smaller than expected, though it increases as we apply more

smearing. At larger numbers of smearing sweeps, we see a considerable increase in the topological

contribution to the string tension as the lattice spacing decreases, so it is possible that this small

value is a lattice artefact combined with distortions from unphysical dislocations. Since the value of

the QCD Wilson Loop (U ) still increases with smearing, more smears might be needed to remove

all the dislocations. To say anything definitive, we need to complete our study of the effects of

smearing on this quantity, and then repeat the calculation at finer lattice spacings.

4. Conclusions

We have shown that the string tension for the Abelian restricted field is identical to the string

tension of the actual Yang-Mills gauge field, and therefore a proof of confinement of the (easier

to analyse) restricted field will equally demonstrate confinement in full Yang-Mills theory. This

is alone enough to demonstrate that the mesons at least are colour neutral. We have identified

topological structures that can appear in the topological part of the restricted field: the familiar π2

Wang-Yu magnetic monopoles, and other π1 objects. These π1 objects drive confinement. We do

not make use of monopole condensation and the dual-Meissner effect: our proposed confinement

mechanism seems to be something different. The structures observed in the field strength are

6
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consistent with expectations from our model. However, our analysis of whether the topological

term is the dominant contribution to the restricted potential is not yet conclusive, since there are

ambiguities related to the amount of smearing and there seem to be some lattice artefacts. To

resolve these ambiguities requires a more detailed study. This is surprising, since earlier results

(including our own using the same method to calculate the topological contribution) where the

link between the restricted and full string tensions was only approximate lacked this ambiguity.

Questions have also been raised as to whether our method of isolating the topological term by

applying the Abelian decomposition on a highly smoothed field is valid [9], which might explain

why we see a lower than expected topological contribution to the string tension.
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