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We have proposed the non-Abelian dual superconductivity in SU(3) Yang-Mills theory for the mechanism of

quark confinement, and we presented the numerical evidences in preceding lattice conferences by using the

proposed gauge link decomposition to extract magnetic monopole in the gauge invariant way. In this talk,

we focus on the dual Meissner effects in view of the magnetic monopole in SU(3) Yang-Mills theory. We

measure the chromoelectric and chromomagnetic flux due to a pair of quark and antiquark source at finite

temperature. Then, we measure the correlation function of Polyakov loops and Polyakov loop average at

various temperatures, and investigate chromomagnetic monopole current induced by chromo-magnetic flux

in both confinement and deconfinement phase. We will discuss the role of the chromoelectric monopole in

confinement/deconfinement phase transition.
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1. Introduction

The dual superconductivity is a promising mechanism for quark confinement [1]. To establish the dual
superconductivity picture, we must show the magnetic monopoles play the dominant role in quark confine-
ment. We have presented a new formulation Yang-Mills (YM) theory and proposeed the non-Abelain dual
superconductivity picture forSU(3) Yang-Mills theory (for a review see [2]). We have presented a lattice
version of a new formulation ofSU(N) YM theory[3], that gives the decomposition of a gauge link vari-
ableUx,µ = Xx,µVx,µ , which is suited for extracting the dominant mode,Vx,µ , for quark confinement in the
gauge independent way. In the case of theSU(2) YM theory, the decomposition of the gauge link variable
is given by a compact representation of the Cho-Duan-Ge-Faddeev-Niemi (CDGFN) decomposition [4] on a
lattice [5][6][7]. For theSU(N) YM theory, the new formula for the decomposition of a gauge link variable
is constructed as an extension of theSU(2) case. Our formulation can overcome the problems in the Abelian
projection method: the magnetic monopole dominant is obtained only in special gauges such as the maximal
Abelian (MA) gauge and the Laplacian Abelian gauge, and the Abelian projection itself breaks the gauge
symmetry as well as color symmetry (global symmetry).

To the SU(3) YM theory, we have applied the minimal option. The minimal option is obtained for the
stability group ofH̃ = U(2) ∼= SU(2)×U(1), which is suitable for the Wilson loop in the fundamental rep-
resentation. This fact is derived from the non-Abelian Stokes theorem [21]. Then, we have demonstrated the
gauge-independent (invariant) restrictedV-field dominance (or conventionally called Abelian dominance) and
the gauge independent non-Abelian magnetic monopole dominance [12][10][13][14][20]. The dual Meissner
effect in YM theory must be examined by measuring the distribution of the chromoelectric field strength (or
chromo flux) as well as the magnetic monopole current created by a static quark-antiquark pair. In theSU(2)
case, the extracted field corresponding to the stability groupH̃ = U(1) shows the dual Meissner effect [8],
which is a gauge invariant version of the Abelian projection in MA gauge. In theSU(3) case, there are many
works on chromo flux by using Wilson line/loop operator, e.g., [23][24][25]. At the previous conference, we
have demonstrated the non-Abelian dual Meissner effect[15]. By applying our new formulation to theSU(3)
YM theory, we have given the numerical evidence of the non-Abelian dual Meissner effect claimed by us, and
found the chromoelectric flux tube by measuring the chromo flux created by a static quark-antiquark pair. We
have determined that the type of vacuum forSU(3) YM theory is of type I, which is in sharp contrast to the
SU(2) case: the border of type I and type II [17] or of week type I [8].

In this talk, we focus on the confinement/deconfinement phase transition and the non-Abelian dual su-
perconductivity at finite temperature: We measure a Polyakov loop average and correlation functions of the
Polyakov loops which are defined for both the original YM field and extractedV-field to examine theV-field
dominance in the Polyakov loop at finite temperature. Then, we measure the chromoelectric flux between a
pair of static quark and antiquark of the Polyakov loops, and investigate its relevance to the phase transition
and the non-Abelian dual Meissner effect.

2. Method

We introduce a new formulation of the lattice YM theory in the minimal option, which extracts the dom-
inant mode of the quark confinement forSU(3) YM theory[20, 14], since we consider the quark confinement
in the fundamental representation. LetUx,µ = Xx,µVx,µ be a decomposition of the YM link variableUx,µ ,
whereVx,µ could be the dominant mode for quark confinement, andXx,µ the remainder part. The YM field
and the decomposed new variables are transformed by fullSU(3) gauge transformationΩx such thatVx,µ is
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transformed as the gauge link variable andXx,µ as the site variable:

Ux,µ −→U ′
x,ν = ΩxUx,µΩ†

x+µ , (2.1a)

Vx,µ −→V ′
x,ν = ΩxVx,µΩ†

x+µ , Xx,µ −→ X′x,ν = ΩxXx,µΩ†
x. (2.1b)

The decomposition is given by solving the defining equation:

Dε
µ [V]hx :=

1
ε

[
Vx,µhx+µ −hxVx,µ

]
= 0, (2.2a)

gx := ei2πq/3exp(−ia0
xhx− i ∑3

j=1a( j)
x u( j)

x ) = 1, (2.2b)

wherehx is an introduced color fieldhx = ξ (λ 8/2)ξ † ∈ [SU(3)/U(2)] with λ 8 being the Gell-Mann matrix
andξ an SU(3) group element. The variablegx is an undetermined parameter from Eq.(2.2a), u( j)

x ’s are
su(2)-Lie algebra valued, and hasqx an integer value0,1,2. These defining equations can be solved exactly
[19], and the solution is given by

Xx,µ = L̂†
x,µ det(L̂x,µ)1/3g−1

x , Vx,µ = X†
x,µUx,µ = gxL̂x,µUx,µ , (2.3a)

L̂x,µ =
(
Lx,µL†

x,µ
)−1/2

Lx,µ , Lx,µ =
5
3

1+
2√
3
(hx +Ux,µhx+µU†

x,µ)+8hxUx,µhx+µU†
x,µ . (2.3b)

Note that the above defining equations correspond to the continuum version:Dµ [V ]h(x)= 0andtr(h(x)Xµ(x))
= 0, respectively. In the naive continuum limit, we have reproduced the decompositionAµ(x) = Vµ(x) +
Xµ(x) in the continuum theory [19] as

Vµ(x) = Aµ(x)− 4
3

[
h(x),

[
h(x),Aµ(x)

]]− ig−14
3

[
∂µh(x),h(x)

]
, (2.4a)

Xµ(x) =
4
3

[
h(x),

[
h(x),Aµ(x)

]]
+ ig−14

3

[
∂µh(x),h(x)

]
. (2.4b)

The decomposition is uniquely obtained as the solution (2.3) of Eqs.(2.2), if color fields{hx} are obtained.
To determine the configuration of color fields, we use the reduction condition to formulate the new theory
written by new variables (Xx,µ ,Vx,µ ) which is equipollent to the original YM theory. Here, we use the reduction
functional:

Fred[hx] = ∑
x,µ

tr
{
(Dε

µ [Ux,µ ]hx)†(Dε
µ [Ux,µ ]hx)

}
, (2.5)

and then color fields{hx} are obtained by minimizing the functional (2.5).

3. Lattice result

We generate YM gauge configurations{Ux,µ} at finite temperature using the standard Wilson action. We
set up a latticeL3×NT (L = 24,NT = 6) and the control the temperature by changing the parameterβ :
β = 5.8, 5.9, 6.0, 6.1, 6.2, 6.3. We generate 500 configurations for eachβ . In the measurement of the
Polyakov loop and Wilson loop, we apply the APE smearing technique to reduce noises [29]. The gauge link
decompositionUx,µ = Xx,µVx,µ is obtained by the formula (2.3) given in the previous section, after the color
field configuration{hx} is obtained by solving the reduction condition of minimizing the functional eq(2.5)
for each gauge configuration{Ux,µ}.

Figure1 shows the distribution of space-averaged Polyakov loops for each configuration:

PU := L−3∑{~x} tr
(
∏NT

t=1U(~x,t),4

)
, PV := L−3∑{~x} tr

(
∏NT

t=1V(~x,t),4

)
. (3.1)
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Figure 1: The distribution of the space-averaged Polyakov loop for each configuration:(Left) For the YM field. (Right)
For the restricted field.
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Figure 2: Parameterβ dependence of the Polyakov loop average: Red plots show〈PU 〉 v.sβ , green ones〈PV〉 v.sβ .
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Figure 3: (Left) The connected operatorWLUpL† between a plaquetteUp and the Wilson loopW. (Right) Measurement
of the chromo-flux at finite temperature via Polyakov loop.

The left panel Fig.1 shows the distribution ofPU for the YM field for each configuration, and the right panel
shows the distribution ofPV for the restricted field (V-field) for the relevant configurations. Then, we obtain the
Polyakov loop average, which is the conventional order parameter for confinement and deconfinement phase
transition inSU(3) YM theory. Figure2 shows combined polts of the Polyakov loop average for the YM field
〈PU〉 and the restricted field〈PV〉. Each plot shows the same critical temperature of confinement/deconfinement
phase transition. These show the extractedV-field reproduces the phase transition at finite temperature. We
can also show the restricted field (V-field) dominance in the Polyakov loop correlation functions, which was
presented at the last conference[18].

Next, we investigate the non-Abelian dual Meissner effect at finite temperature. Note that at finite tem-
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Figure 4: chromo-flux created by a pair of Polyakov loops of the YM field. (left)β = 5.80, (middle )β = 6.00, (right)
β = 6.30

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  2  4  6  8  10  12

V b=5.80

Ex
Ey
Ez
Bx
By
Bz

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  2  4  6  8  10  12

V b=6.00

Ex
Ey
Ez
Bx
By
Bz

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  2  4  6  8  10  12

V b=6.30

Ex
Ey
Ez
Bx
By
Bz

Figure 5: chromo-flux created by a pair of Polyakov loops of the restricted field. (left)β = 5.80, (middle )β = 6.00,
(right) β = 6.30

perature we must use the operator with the same size in the temporal direction, and the quark and antiquark
pair is replaced by a pair of the Polyakov loop with the opposite direction. To investigate the chromo flux, we
use the gauge invariant correlation function which is used at zero temperature. The chromo flux created by a
quark-antiquark pair is measured by using a gauge-invariant connected correlator of the Wilson loop [26]:

ρW :=

〈
tr

(
UpL†WL

)〉

〈tr(W)〉 − 1
3
〈tr(Up) tr(W)〉
〈tr(W)〉 , (3.2)

whereW represents the source of a quark-antiquark pair settled by the Wilson loop in Z-T plane,Up a plaquette
variable as the probe operator for measuring the field strength, andL the Wilson line connecting the source
W and the probeUp. (see the left panel of Figure3). The symbol〈O〉 denotes the average of the operatorO

over the space and the ensemble of the configurations. Note that this is sensitive to the field strength rather
than the disconnected one. Indeed, in the naive continuum limit, the connected correlatorρW is given by

ρW
ε→0' gε2

〈
Fµν

〉
qq̄ := 〈tr(gε2Fµν L†WL)〉

〈tr(W)〉 +O(ε4). Thus, the chromo field strength is given byFµν =
√

β
6 ρW.

Figure4 and5 show the measurement of chromo flux for Yang-Mills field and restricted field (V-field) at
finite temperature. The chromo-flux of quark-antiquark pair is measured on the plane atz= 1/3R for a given
quark atz= 0 and an antiquark atz= R by moving the probe,Up or Vp along the y-direction. We find the
restricted field dominance for the chromo-flux tube at finite temperature as well as zero temperature

At low temperature (see left panels of Fig.4 and Fig.5), we observe the chromoelectric flux tube such
that only theEz component in the direction connecting a quark and antiquark pair is observed, while the other
components take vanishing values. This is consistent with the result Ref.[30], though they use the different
operator for the flux measurements.

At high temperature (T > TC) (see right panels of Fig.4 and Fig.5), we can observe no more squeezing
of the chromoelectric flux tube, and non-vanishingEy component in the chromoelectric flux. This shows the
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disappearance of the dual Meissner effect at high temperature.
Then, we investigate the magnetic (monopole) current due to the magnetic condensation:

kµ(x) =
1
2

εµναβ
(
F [V]αβ (x+ ν̂)−F [V]αβ (x)

)
(3.3)

Note that the magnetic monopole current eq(3.3) must have vanishing value if there exists no magnetic
monopole condensation, since the right-hand side of eq(3.3) is the Bianchi identity. Therefore, the magnetic
monopole current can be the order parameter of dual superconductivity. Figure6 shows the measurements for
the magnetic current eq(3.3). We observe the appearance and disappearance of the magnetic monopole current
at low and high temperature, respectively.
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Figure 6: The magnetic carrent (monopole) induced by a pair of Polyakov loops.

4. Summary and outlook

We have investigated the non-Abelian dual Meissner effect at finite temperature by measuring the chromo
flux due to a pair of quark and antiquark source represented by a pair of the Polyakov loops. Using our
proposal for a new formulation of Yang-Mills theory on a lattice, we ware able to extract the dominant mode
for quark confinement as the restricted field (V-field), and confirmed that the restricted field dominance at finite
temperature. We have observed no more squeezing of the chromoelectric flux tube due to the dual Meissner
effect. We have also measured the magnetic (monopole) current in both the confinement and deconfinement
phase, and observed that the confinement/deconfinement phase transition is associated to appearance and
disappearance of magnetic (monopole) current. This is the evidence that the confinement/deconfinement phase
transition is caused by appearance/disappearance of the non-Abelian dual superconductivity.
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