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The purpose of this study is to investigate the relations between instantons, monopoles, and
Chiral symmetry breaking. The monopoles are important topological configurations existing in
QCD which are believed to produce colour confinement. The groups of University of Kanazawa
and Pisa have produced by Lattice simulations many results supporting the idea that QCD vac-
uum is a dual superconductor. Instantons are related to Chiral symmetry breaking, as explained
e.g. in the instanton liquid model of E. V. SHURYAK. Clarifying quantitatively the relation
between monopoles and instantons is not easy, also because monopoles are three dimensional
objects, while instantons are four dimensional. We generate configurations, adding monopole-
antimonopole pairs of opposite charges by a monopole creation operator. We observe that the
monopole creation operator only adds long monopole loops in the configurations. Then, we count
the number of fermion zero modes in the configurations using Overlap fermions as a tool. Finally,
we find that one monopole-antimonopole pair makes one zero mode of plus or minus chirality,
that is to say, one instanton of plus or minus charge.
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1. Introduction

We carry out simulations to show the relations between zero modes of Overlap fermions,
instantons, and monopoles as follows:
(1) Overlap fermions
First, we generate quenched configurations of the Wilson gauge action, construct Overlap operator
from gauge links, solve the eigenvalue problem, and finally, count the number of fermion zero
modes in the configuration.
(2) The number of Instantons
We count the number of instantons from the number of zero modes. However, we never observe
coexistence of zero modes of opposite chirality in the same configuration. We always observe zero
modes of only chirality plus or only chirality minus in all configurations. Nevertheless, we assume
that this is probably due to a kind of instability of pairs of opposite zero modes at small volumes
in their detection, so that the topological charge is correct. Indeed the instanton density calculated
from the average square of the topological charges is consistent with the result of the instanton
liquid model [1].
(3) Additional monopoles
In order to clarify quantitatively the relation between the monopoles and instantons, one monopole-
antimonopole pair with opposite charges is directly added in the configurations by a monopole
creation operator. The monopole creation operator is defined in [2, 3, 4].
(4) Measuring the additional monopoles
We check whether the pair of monopoles is successfully added in the configurations or not, by use
of the method developed in [5]. We find that adding one monopole-antimonopole pair makes one
long monopole loop in configurations.
(5) The relations between Zero modes, instantons and monopoles
Lastly, we generate configurations adding one pair of one monopole and one anti-monopole with
charges ranging from zero to four. We count the number of zero modes for each value of the
monopole charge by the Overlap Dirac operator, and calculate the average square of topological
charge. Finally, we compare analytic predictions based on our assumption on absence of opposite
sign zero modes with the simulation results.

2. Overlap fermions

In the numerical computations [6], the massless Overlap Dirac operator D(ρ) is defined as
follows:

D(ρ) =
ρ
a

[
1+

DW (ρ)√
DW (ρ)†DW (ρ)

]
, DW (ρ) = DW − ρ

a
, (ρ = 1.4). (2.1)

ρ is a (negative) mass parameter 0 < ρ < 2. DW is the massless Wilson Dirac operator defined as
follows:

DW =
1
2
[γµ(∇∗

µ +∇µ)−a∇∗
µ∇µ ] (2.2)

[∇µψ](n) =
1
a
[Un,µψ(n+ µ̂)−ψ(n)], [∇∗

µψ](n) =
1
a
[ψ(n)−U†

n−µ̂,µψ(n− µ̂)] (2.3)
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Figure 1: The observed number of zero modes
NZero vs the physical volume V/r4
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Figure 2: The average square of topological
charges ⟨Q2⟩ vs the physical volume V/r4

0.

There are exact zero modes of plus chirality n+ and minus chirality n− in eigenvalues of this mass-
less Overlap Dirac operator. The topological charge is defined as Q = n+− n−, the susceptibility
⟨Q2⟩/V is computed from the topological charges.
The massless Overlap Dirac operator is calculated by the sign function using the Chebyshev poly-
nomial approximation as follows:

DW (ρ)√
DW (ρ)†DW (ρ)

= sgn(DW (ρ))≡ γ5sgn(HW (ρ)), HW (ρ) = γ5DW (ρ). (2.4)

HW (ρ) is Hermitian Wilson Dirac operator of DW (ρ). We use this HW (ρ) operator for computa-
tions of a minmax polynomial approximation [7].

2.1 Simulation details

We generate configurations using the Wilson gauge action. The numbers of configurations we
use in simulations are O(200) ∼ O(800) for each value of the parameters β and Volume, a total
of 17 choices for the parameters. The Overlap Dirac operator is constructed from gauge links of
the configurations. The eigenvalue problems D(ρ)|ψi⟩ = λi|ψi⟩ are solved by the subroutines of
ARPACK, and O(80) pairs of the low-lying eigenvalues λi and eigenvectors |ψi⟩ are saved. The
index i is the pair number (1 ≦ i ≦ O(80)). In our simulations, the lattice spacing is calculated
following [8], and the Sommer scale r0 = 0.5 [fm] is used.

2.2 The number of Zero modes, the topological charges, and the topological susceptibility

In our simulations, we never observed zero modes of + chirality and zero modes of - chirality in
the same configuration. The zero modes in our simulation have only + chirality or only - chirality in
each configuration. The observed number of zero modes NZero increases with the physical volume
V/r4

0 as shown in Figure 1. We suppose that the number of zero modes we observe is the net
number of zero modes (n+− n−), that is to say the topological charges Q. The average square of
topological charges ⟨Q2⟩ is proportional to the physical volume V/r4

0 as shown in Figure 2. We
compare the topological susceptibility with results of other groups in Figure 3. The figure shows
that our results are consistent with them. Moreover, we check that the finite lattice volume does not
affect the topological susceptibility up to V/r4

0 = 327.4 (L = 2.1 [fm]), Figure 4.
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Figure 3: The topological susceptibility of β =

6.00 together with other group results [9, 10].
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Figure 4: The all results of the topological sus-
ceptibilities in our simulations vs the physical
volume. A dotted line indicates the physical vol-
ume V/r4

0 = 50.00.

2.3 Topological susceptibility in the continuum limit

Last, we fix the physical volume at V/r4
0 = 50.00 indicated in Figure 4, and extrapolate the

five data points of the topological susceptibility to the continuum limit using a linear expression
⟨Q2⟩r4

0/V = c0 +c1a2. Here, we compare with other groups. The results are consistent. Therefore,
we confirm that eigenvalues and eigenvectors of overlap fermions in our simulations are properly
computed.

Our result: χ = (1.86(6)×102 [MeV])4 (2.5)

Ref [11]: χ = (1.88±12±5×102 [MeV])4 (2.6)

Ref [10]: χ = (1.91(5)×102 [MeV])4 (2.7)

The theoretical expectation [12, 13]: χ =
Fπ

6
(m2

η +m2
η ′ −2m2

K)|exp ≃ (1.80×102 [MeV])4

(2.8)

3. Instantons

We assume that we observe the net number of zero modes, because physical lattice volumes
are too small to distinguish n+ and n− in one configuration. Then, the zero modes in our simulations
are defined as ±N± ≡ n+−n− = ±Q, and also the number of zero modes in this study is defined
as NZero = |Q| = N+ : (n+− n− > 0), 0 : (n+− n− = 0), or N− : (n+− n− < 0). The number of
instantons is determined as N = ⟨Q2⟩= ⟨N2

Zero⟩. The result for the instanton density is

ρi = 8.3(3)×10−4 [GeV4]. (3.1)

4. The monopole creation operator

The monopole creation operator is defined in Ref. [2, 3, 4]. Specifically, in this study, we use
the monopole creation operator defined in [4]. The monopole creation operator is defined as

µ = exp(−β∆S) (4.1)
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∆S is defined by modifying the normal plaquette action S as follows:

S+∆S = ∑
n,µ<ν

Re(1− Π̄µν(n)) (4.2)

Π̄i0 is as a modified plaquette which is inserted matrices Mi(⃗n) and Mi(⃗n)† below,

Π̄i0(t, n⃗) =
1

Tr[I]
Tr[Ui(t, n⃗)M

†
i (⃗n+ î)U0(t, n⃗+ î)Mi(⃗n+ î)U†

i (t +1, n⃗)U†
0 (t, n⃗)]. (4.3)

The matrix Mi(⃗n)
Mi(⃗n) = exp(imcA0

i (⃗n− x⃗)), (i = x, y, z). (4.4)

is the discretised form of the classical field configuration A0
i (⃗n− x⃗) produced by the monopoles.

We take a monopole-antimonopole pair of charges ±mc, with

mc = 0,1,2,3,4. (4.5)

The monopole has charge +mc and the anti-monopole charge −mc, and the total monopole charges
is zero. The monopole +mc sits in (x, y, z) the anti-monopole −mc in (x’, y’, z’) at the certain time
slice T, and at a given distance in the lattice. In Monte Carlo simulations pairs of monopoles make
long monopole loops in the configurations.

5. Measuring the additional monopoles
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Figure 5: A histogram of the length of the monopole loops. The monopoles with charges are added in the
configurations. The monopole charges are increased from 0 to 4.

To check that the monopoles are successfully added, we detect the monopoles in the configura-
tions. It has been found that the monopoles are divided in two clusters [15, 14, 5, 17] in MA gauge.
The small (ultraviolet) clusters are composed of the short monopole loops. The large (infrared)
clusters which percolate through the lattice and wrap around the boundaries of lattice are formed
by the longest monopole loop Lloops. The method of numerical computations of the monopole
world line in four dimension is explained in [16]. If the physical lattice volume is large enough,
the small clusters and the large clusters are separated. We measure the length of monopole loops,
and make a histogram as in Figure 5. We find that the monopole creation operator makes only long
monopole loops in vacuum, and that the length of monopole loops increases with the number of
monopole charges.
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Figure 6: The number of zero modes vs the
number of monopole charges.

 charges N
0 1 2 3 4

 〉 
2

 Q〈 

0

1

2

3

4

5

6

7

8

9

 Prediction 

 = 6.00β, 4V = 14

 Normal Conf. 
 1-pair 0-charge 

 1-pair 1-charge 

 1-pair 2-charge 

 1-pair 3-charge

 1-pair 4-charge

Figure 7: The average square of topological
charges vs the number of monopole charges.

6. The relations between Zero modes, instantons and monopoles

We generate configurations with monopole-antimonopole pair varying the magnetic charges
of the monopoles mc (Ncharges) from zero to four. The distances between the monopole and anti-
monopole are fixed at 6, and 8. The numbers of configurations are used as follows: O(200) ∼
O(300), for the distance 6; O(400), for the distance 8. We count the numbers of zero modes
NZero in the spectrum of eigenvalues, and calculate the average square of topological charges ⟨Q2⟩.
We compare the simulation results with an analytic prediction as indicated in Figure 6 and Figure
7. The distance is 8. We do not do smearing, cooling, or MA gauge fixing in the simulations.
Concerning the analytic prediction in the figures, first, we suppose that one pair of one monopole

A B Fit Range (Ncharges) χ2/d.o. f .
Prediction 1.00 3.17 (19) - -
Distance 6 1.02 (13) 2.90 (19) 0 - 4 7.9/3.0
Distance 8 1.19 (11) 3.1 (2) 0 - 4 1.4/3.0

Table 1: The final results. The slope A that is computed by the analytical prediction is exactly 1. The inter-
cept B by the analytical prediction is ⟨Q2⟩= 3.17(19). This value is computed from normal configurations.

with plus one charge and one anti-monopole with minus one charge makes one zero mode of plus
chirality or minus chirality in one configuration. However, we can not observe the zero mode by our
simulations. Instead of the zero mode, we observe the topological charge Q = n+−n− as discussed
in the Section 3. Then we analytically calculate the average square of topological charges, when
one pair of monopoles with 0, 1, 2, 3, and 4 charges are added in configurations. We fit a linear
function y = Ax + B to the simulation results to check the consistency. The final results are listed
in Table 1. Those results are consistent. That is to say that the one monopole with plus one charge
and one anti-monopole with minus one charge make one instanton.

7. Summary and Conclusion

We discussed the number of zero modes, topological susceptibility in the continuum limit,
the number of instantons, adding monopoles into configurations, measuring the monopole loops
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in the configurations, and the relation between the number of zero modes and the charges of the
monopoles. The number of instantons is directly proportional to the physical volume. The instanton
density is consistent with the instanton liquid model by E. V. SHURYAK. We confirm that one pair
of one monopole and one anti-monopole is successfully added in configurations by the monopole
creation operator, by measuring the length of the long monopole loops. We find that one monopole
with plus one charge and one anti-monopole with minus one charge make one instanton.
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