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Topological insulators are substances which are bulk insulators but which carry current via special

“topologically protected” edge states. The understandingof long range topological order in these

systems is built around the idea of a Berry connection, whichis a gauge connection obtained from

the phase of the electron wave function transported over momentum space rather than coordinate

space. The phase of a closed Wilson loop of the Berry connection around the Brillouin zone

defines a topological order parameter which labels discreteflux vacua. The conducting states

are surface modes on the domain walls between discrete vacua. Evidence from large-Nc chiral

dynamics, holographic QCD, and Monte Carlo observations has pointed to a picture of the QCD

vacuum that is very similar to that of a topological insulator, with discrete quasivacua labelled by

θ angles that differ by mod 2π . In this picture, the domain walls are membranes of Chern-Simons

charge, and the quark condensate consists of surface modes on these membranes, which are de-

localized and thus support the long range propagation of Goldstone pions. The Berry phase in

QED2 describes charge polarization of fermion-antifermion pairs, while in 4D QCD it describes

the polarization of Chern-Simons membranes.
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Long Range Topological Order in QCD H. B. Thacker

1. Introduction

The role of gauge field topology in resolving theUA(1) problem (i.e. the large mass of the
flavor singletη ′ Goldstone boson) is well explored, both theoretically and numerically. There is
reason to believe that topology plays a much broader role in determining the low energy dynamics
of QCD, but this role is less well understood. For theη ′ problem, the quark-antiquark annihilation
process that provides the gluonic component of the mass is highly localized and its contribution
is determined simply by the topological susceptibility of the gluonic vacuum. Any model of the
QCD vacuum that incorporates fluctuations of topological charge density at the proper level (e.g.
an instanton liquid model) will give the correct result, independent of the specific structure of the
fluctuations. On the other hand, an understanding of a possible topological origin of the chiral
condensate and Goldstone pion propagation requires a theoretical framework that describes the
long range structure of topological fluctuations. From the index theorem, we expect the near-zero
eigenmodes of the Dirac operator that support the chiral condensate to be closely correlated with
topological charge fluctuations in the gauge field. For example, in the instanton liquid model the
chiral condensate is formed from the ’tHooft zero modes of the instantons. However, it is diffi-
cult to understand how massless pions propagate over long distances in an instanton framework.
The problem is that instanton-like fluctuations are localized within approximately the confinement
scale, so the quarks in the pion must hop from instanton to instanton. Unless the instantons are spa-
tially correlated over long distances, they will not support the long range phase coherence required
for massless pion propagation. In the condensed matter analogy that I will explore in this talk,
massless pion propagation is the analog of finite conductance, and its absence in an uncorrelated
instanton gas is an example of Anderson localization. More generally, it is not easy to reconcile
the propagation of massless pions with the strong-coupling-inspired view of the QCD vacuum as a
system in which the gauge fields are disordered over a distance larger than the confinement scale.
The propagation of the pion as a coherent chiral oscillationof the condensate would seem to require
delocalized quark eigenmodes, suggesting a long range coherence in the topological structure of
the QCD vacuum.

Early work by Luscher [1] and Witten [2, 3] suggested the formof such long range fluctua-
tions, namely, that they are 2+1 dimensional membranes which are domain walls between discrete
quasivacua, separating regions with values of the QCD vacuum θ angle differing by±2π. The
θ angle serves as a topological order parameter which labels distinct quasivacua. The existence
of multiple discrete vacua separated by mod 2π steps in theθ angle is suggested by large-Nc chi-
ral Lagrangian arguments [2]. LargeNc phenomenology and the OZI rule indicate that theUA(1)

anomaly appears in the chiral Lagrangian as a pureη ′ mass term∝ η ′2 = (−i logDetU)2 whereU
is the chiral field. The multiple branches of the log in this Lagrangian term imply multiple discrete,
nearly degenerate quasivacua whose degeneracy is broken atO(1/Nc) by theUA(1) anomaly. The
domain walls between these vacua are gauge excitations defined by the “Wilson bag” operator[1],
the exponentiated integral of the 3-index Chern-Simons tensor integrated over the world volume of
the membrane. The CS tensor is dual to the CS current,

Kµ = εµαβγTr

(

Aα∂ β Aγ +
2
3

AαAβ Aγ
)

≡ 32π2NcεµαβγK
αβγ

3 (1.1)
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whose divergence is proportional to the topological chargedensity,

∂ µKµ = 32π2NcQ(x) (1.2)

From this it is easy to see that inserting a closed Chern-Simons membrane in the vacuum path
integral is equivalent to including aθ term inside the enclosed 4-volumeV , so the CS membrane
on surfaceS is a domain wall separating vacua with distinctθ values,

exp

(

iθ
∫

V
Q(x)d4x

)

= exp

(

iθ
∫

S
K

µνλ
3 dxµdxν dxλ

)

(1.3)

The value ofθ/2π can be interpreted as the charge of the bag surface. The integral of K3 over the
closed surface is not gauge invariant: it can change by an integer under a topologically nontrivial
gauge transformation onS. The right hand side of (1.3) is thus only gauge invariant forbag charge
θ/2π = integer. Studies of the topological charge distribution in Monte Carlo gauge configurations
[4, 5] have revealed long range structure in the form of thin,coherent codimension one membranes
of topological charge arranged in a layered array of alternating sign membranes. The spacing
and thickness of the branes is of order the lattice spacing. Oppositely charged surfaces are closely
spaced, forming coherent dipole layers of topological charge. The topological structure observed in
Monte Carlo simulations is very naturally interpreted as a condensate of Chern-Simons membranes.

The observed structure of the TC distribution can actually be understood as a consequence of
some basic, required features of the topological charge correlator. The topological charge distribu-
tion is strongly constrained by the fact that the Euclidean correlatorG(x) = 〈Q(x) Q(0)〉 must be
negative for finite separation|x| > 0. Furthermore, the integrated correlator is just the topological
susceptibility, which is positive. The only way to accomodate both these features of the correlator
is to have a positive “wrong sign” delta-function contact term at x = 0. The observed layered,
alternating sign array of coherent topological charge membranes leads to exactly this form for the
correlator in the continuum limit, with a dominant positivecontact term at the origin and a negative
tail beyond 2 or 3 lattice spacings [6]. The observed negativity of the correlator for|x| > 0 beyond
a few lattice spacings is a result of the alternating sign layered structure of the TC distribution in
the Monte Carlo configurations. (By contrast, a vacuum dominated by finite size instantons would
not satisfy the negativity constraint for separations smaller than the instanton radius.)

In this talk I will discuss some of the implications of topological charge membranes for the
chiral condensate and Goldstone boson propagation. General considerations surrounding the index
theorem and spectral flow of the Dirac operator show that the topological charge membranes will
have attached Dirac eigenmodes, specifically, modes which are localized on the membrane surface
but delocalized over its world volume. It is these topological surface modes which make up the
chiral condensate and provide for the long range propagation of massless pions. At this point we
recognize a close parallel between this description of Goldstone boson propagation in the QCD
vacuum and recent developments in the theory of quantum conductivity in topological insulators
and quantum Hall states. A topological insulator is a material which is a bulk insulator, i.e. the
spectrum for electrons propagating in the bulk has a mass gap, but which conducts electric current
via massless, “topologically protected” boundary states which reside on domain wall surfaces. The
surfaces separate regions with differing values of a topological order parameter. A central aspect
of topological insulator theory is the Berry phase construction which provides the definition of the
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topological order parameter. The Berry phase is obtained from the phase of a Bloch wave electron
state under adiabatic transport in momentum space. For a particular band, this defines a gauge con-
nection over the Brillouin zone (BZ). A closed Wilson loop ofthe Berry connection which winds
around the compact BZ is gauge invariant under small topologically trivial transformations of the
Berry connection. But the Wilson loop phase can change by integer multiples of 2π under large
gauge transformations, corresponding to threading units of “magnetic” flux through the loop that
goes around the BZ. Such a discrete change of the Berry phase describes the transfer of a unit of
charge between boundary surfaces. To formulate this idea weneed to analytically continue the
phase of the wave function in momentum space, treating the Wilson loop as a closed contour in
the complex momentum or rapidity plane, and explore the singularities of the analytically con-
tinued Berry connection inside the loop. In general we expect the poles and cuts of analytically
continued quark phase shifts in momentum space to reflect thelow energy spectrum of the Dirac
Hamiltonian, so the nearby singularities of the analytically continued Berry phase are associated
with the low-lying quark eigenmodes which form the condensate. In the case of QED2, it has been
shown by studying the analytic structure of Bethe ansatz wave functions, that the poles in the Berry
connection represent the vacuum polarization of quark-antiquark pairs [7].

2. Spectral flow, charge polarization, and the Berry connection

To illustrate the connection between Hamiltonian spectralflow and the Berry phase description
of topological charge, consider the example of 2D U(1) theory for the case of a constant field
strength on a periodic 2-torus with spatial length 2π and Euclidean time periodT . Choosing
A0 = 0 gauge, the gauge interaction term in the Dirac operator isA1 = Ft, whereF ≡ 1

2ε µνFµν

is the field strength andt is Euclidean time. Assume there is one unit of topological charge on
the torus, soF = 1/T . For a massless Dirac fermion in 2D Euclidean space, the Dirac eigenvalue
equation separates into equations for left and right handedcomponents:

DψL(x, t) = λψL(x, t) (2.1)

D
∗ψR(x, t) = λψR(x, t) (2.2)

where

D ≡
∂
∂ t

− i
∂
∂x

+ Ft (2.3)

For F = 1/T > 0, there is one left-handed zero mode, given explicitly by

ψL(x, t = kT ) =
∞

∑
n=−∞

e−
T
2 (n+k)2

einx (2.4)

which satisfiesDψL = 0. If the field strengthF is negative, there is instead a right-handed zero
modeψR = ψ∗

L .

In A0 = 0 gauge, the wavefunctions are quasiperidic in Euclidean time, i.e. periodic up to a
gauge transformation,

ψL(x, t + T) = e−ixψL(x, t) (2.5)
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In a Hamiltonian framework, the index theorem manifests itself in the form of a spectral flow
constraint. Consider the Hamiltonian operator for a left-handed fermion as a parametric function
of a rescaled timek ≡ t/T ,

H(t/T ) = −i
∂
∂x

+
t
T

(2.6)

Acting on a periodic spatial interval 0< x < 2π, this Hamiltonian is periodic, up to a gauge trans-
formation, over the Euclidean time interval 0< t < T , i.e.

H(k +1) = e−ixH(k)eix (2.7)

Thus, for any integerk, the spectrumEn = n + k of H(k) matches up withEn = n, the spectrum
of H(0). The Dirac spectral flow for the gauge configuration is given by k, the integer shift of
the spectrum over the periodic time interval, or, more generally, the net number of left- minus
right-handed modes that cross from negative to positive energy. The spectral flow of the Dirac
Hamiltonian is equal to the integrated topological charge over the 2D Euclidean space. The need
for a gauge tranformation (2.7) to match wave functions att = 0 andt = T is an indication that
there has been a net transport of one unit of charge around theperiodic spatial box 0< x < 2π. If
we only consider the left chiral component of the Dirac field,the spectral evolution from 0 toT
violates charge conservation, since an extra charge appears when an occupied negative energy state
crosses to positve energy. This is just the axial anomaly. For a full Dirac field, the left and right
eigenstates mix as they crossE = 0, and the spectral evolution corresponds to pair production of a
left-moving fermion and a right-moving antifermion. (Thiscan be shown by adding a small mass
term to separate positive and negative energy branches and then tracing the adiabatic evolution
of the eigenstates [8].) Thus the spectral evolution induced by the backgroundF field conserves
electric charge, but the axial-vector charge in the box changes by +2 when the pair is created. .

Thus far, we have considered spectral flow inA0 = 0, A1 = Ft gauge, whereFt ≡ k can be
treated as a spectral parameter in the Hamiltonian. The relationship between spectral flow and the
Berry phase construction is seen by transforming to CoulombgaugeA0 = −Fx, A1 = 0 with the
gauge transformation

g(x, t) = eiFtx = eikx (2.8)

In this gauge, the Dirac Hamiltonian includes a Coulomb potential −Fx. The Hamiltonian eigen-
functions are now periodic int but quasiperiodic on the spatial interval 0< x < 2π. They have
the form of Bloch wave states where the spectral parameterk plays the role of the Bloch wave
momentum:

Ψ(x,k) = eikxu(x,k) (2.9)

whereu(x+2π,k) = u(x,k). We can now interpret this as a Bloch wave defined on a large spatial
volumeL → ∞ made up of unit lattice cells of length 2π, with a periodic coulomb potential.. Then
an eigenstate on the periodic unit cell becomes a band of states on the Brillouin zone. In this
gauge, evolution over a Euclidian time period translates into adiabatic transport of the Bloch wave
around the momentum space Brillouin zone. The Berry connection is obtained from the phase of
the periodic part of the Bloch wave,

A(k) = Im
∫ 2π

0
dx u∗(x,k)

∂
∂k

u(x,k) (2.10)
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The topological order parameter is the Berry phase given by the Wilson loop around the Brillouin
zone

θ =

∮

dkA(k) (2.11)

This is the same construction that is central to the theory ofelectric charge polarization in topo-
logical insulators [9], and it has the same physical interpretation. As I will discuss in the next
section, the Berry phase for QED2 obtained in this way measures the electric polarization of the
vacuum due to fermion-antifermion pairs, while the analogous construction in 4D QCD measures
the polarization of Chern-Simons membrane-antimembrane pairs in the gauge vacuum.

3. Pions as brane polarization waves

To see the connection between the Berry phase (2.11) and charge polarization in QED2, we
introduce the bosonized form of the theory by writing the conserved vector current in terms of a
real pseudoscalar fieldφ(x),

jµ =
1

2π
εµν∂ ν φ (3.1)

Note that 2D bosonization (3.1) is just the usual expressionfor electric charge polarization in terms
of the corresponding currents, viz.~∇ · ~P = − j0, ∂0~P = ~j, with φ representing the polarization.
A chiral rotation is a translationφ → φ + α . A fermion mass term corresponds to a sine Gordon
interaction∝ (1− cosφ). In Coulomb gauge, the gauge interaction is a static Coulombinteraction
which becomes a boson mass term∝ e2φ2. The significance of the sine Gordon field for topo-
logical ordering is seen by considering the bosonic representation of fermions and antifermions as
topological kinks and antikinks whereφ jumps by±2π, it is easy to see that the pseudoscalar field
is a topological order parameter whose vacuum value changesby ±2π when a pair is produced
and the fermion and antifermion propagate to opposite boundaries of the cell. But this is just the
process that results in a change of the Berry phase (2.11) by±2π. So we can identify the Berry
phase on a cell with the average value of the polarization (i.e. the sine Gordon field) on the cell,

∆θ = ∆
∫ 2π

0
φ

dx
2π

=

∫ 2π

0

dx
2π

∫ T

0
dt∂0φ =

∫ T

0
dt

∫ 2π

0
dx j50 =

∫ T

0
Q5

0dt (3.2)

The last expression shows that the Berry phase is a chiral phase rotation generated by the total axial
charge on the unit cell.

We can employ a similar Berry phase construction to describethe polarization of Chern-
Simons membrane-antimembrane pairs in the QCD vacuum [8]. The polarization of a brane pair
is just the transverse separation between the brane and antibrane. In the case of QED2, the vac-
uum transition described by (3.2) consists of a pair creation followed by the propagation of the
fermion and antifermion to opposite boundaries of the cell.The value ofθ averaged over the cell
at any time during this transition is just the spatial separation of the pair, so when the fermion
and antifermion reach opposite boundaries of the cell, we have θ = ±2π. Similarly, in 4D QCD,
the Berry phase describes the polarization of Chern-Simonsmembrane-antimembrane pairs. [Note
that the fermion-antifermion pairs in QED2 can also be thought of as Chern-Simons membrane-
antimembrane pairs, since in 2D a CS membrane is just a charged particle Wilson line.] Withθ = 0
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outside the bag formed by the membrane and antimembrane, we haveθ = ±2π inside the bag, and
the value ofθ averaged over the cell is just the transverse separation, i.e. the polarization.

In a membrane condensate of the form described here, the distribution of topological charge
transverse to the brane surfaces has an antiferromagnetic short range order at the scale of the cut-
off, as exhibited by the large negative 2-point TC correlator at a distance of a few lattice spacings.
The integral of this correlator, which determines the topological susceptibility, exhibits a large can-
cellation between the positive contact term at the origin and the short range negative contribution
[6]. The positive and negative contributions toχt are separately divergent in the continuum limit,
but the cancellation leads to a finite result forχt which scales nicely as the lattice spacing goes
to zero. This provides good numerical evidence that the feature of the QCD vacuum that emerges
in the continuum limit from the alternating sign “membrane sandwich” is its polarizability, which
produces finite topological susceptibility of the gluonic vacuum. In this framework, a Goldstone
pion is a bound state of a left-handed quark and a right-handed antiquark in surface modes of a
membrane-antimembrane pair. Since discrete topological changes of the polarizationθ correspond
to qq̄ pair creation or annihilation, we can suppress these topological fluctuations by giving the
quark and antiquark two different flavors. Then the polarization is described by a flavor nonsinglet
polarization, obtained from (2.10) by putting flavor indices on the quark wave functions. In this
case, the polarization of the chiral condensate represented by the Berry phase is generated by the
conserved nonsinglet axial charge. These nonsinglet polarization waves are Goldstone pions.

This work was supported by the Department of Energy under grant DE-SC00079984.
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