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1. Introduction

A topological charge is one of the most fundamental quantity in QCD. It characterizes the

vacuum structure. Lattice QCD is a main tool in the study of the topological charge [1]. Lattice

QCD allows us to perform a nonperturbative analysis in a systematic way.

The topological charge is often measured with a gluonic �eld strength operator on the lattice.

Though it suffers from noisy ultraviolet �uctuations, a smoothing technique tames them so that a

discernible signal of the topological charge can be obtained. Cooling or smearing have been used

for smoothing gauge �elds. Recently, a gradient �ow is also employed. In contrast to the traditional

cooling and smearing, the gradient �ow has an advantage that it provides a continuous change of

the gauge �eld. The gradient �ow accomplishes a better control of smoothing.

Alternatively, the topological charge can be calculated with a fermionic de�nition. The topo-

logical charge is determined, for example, by the index theorem with the overlap-Dirac operator. A

clear advantage of the fermionic de�nition is that the result is guaranteed to be an integer. A subtle

point, on the other hand, is the integer values depend on the choice of the de�nition, due to a �nite

lattice spacing. In the case of the overlap-Dirac operator, a value of the topological charge occa-

sionally changes according to a parameter in the formulation. Consistency check of the topological

charges in the fermionic and gluonic de�nitions would be helpful as an estimator of the scaling

violation.

In this work, topological charges are computed with gluonic operators on N f = 2 topology

�xed gauge con�gurations. The measurements are performed using several smoothing techniques.

Cooling with plaquette and improved local actions, APE and HYP smearing, as well as gradient

�ows are employed. The results are compared with each other, and with the values obtained using

the overlap-Dirac operator. Similar attempts are reported in Refs. [2].

2. Setup

2.1 Gauge con�guration

Measurement of the topological charge is performed on N f = 2 gauge con�gurations provided

by JLQCD Collaboration [3]. The lattice size is 163 �32 at the lattice spacing of a = 0:118(2) fm.

The gluon action is Iwasaki-type improved gauge action,

Sg = b

 

c
g
0 å

x;m<n

Pmn(x)+ c
g
1 å

x;m ;n

Rmn(x)

!

; (2.1)

where b = 6=g2
0, c

g
0 = 3:648, c

g
1 = �0:331. The quark action is an overlap-Dirac fermion action,

Sq = flqDov(m)q; (2.2)

Dov(m) =
�

m0 +
m

2

�

+
�

m0 �
m

2

�

g5sgn(HW(�m0));HW(�m0) = g5DW(�m0); (2.3)

where m is the bare quark mass. DW(�m0) is the Wilson operator with a negative mass, �m0 =

�1:6. Furthermore, unphysical Wilson fermion y with a negative mass as well as twisted mass

terms are added to �x the topological charge de�ned by the index theorem Qindex,

dSW = flyDW(�m0)y +f�(DW(�m0)+ img5t3)f ; (2.4)
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b m Qindex # conf MD time

2.30 0.05 -2 50 2500

Table 1: Parameters of the gauge con�gurations. Molecular Dynamics time is the number of trajectories

multiplied by the trajectory length.

where f is a pseudofermion, and m is the twisted mass parameter. m = 0:2 is employed in the

con�guration generation. Each con�guration is separated by 100 trajectories with its trajectory

length 0.5. The main simulation parameters are summarized in Table 1.

2.2 Gluonic topological charge operator

The topological charge is measured using a gluonic �eld strength.

Qimprove = c0Q1�1+ c1Q1�2; (2.5)

Q1�1;2 =
1

32p2 å
m ;n ;r ;s

emnrsTr F
1�1;2
mn F

1�1;2
rs ; (2.6)

F
1�1;2
mn = �

i

4
[C1�1;2

mn ]AH;CAH
mn =

1

2i

�

Cmn �C�
mn

�

; (2.7)

where C1�1
mn is the cloverleaf constructed with 1 � 1 plaquettes, and C1�2

mn with 1 � 2 rectangular

loops. The improvement coef�cients c0 and c1 can be tuned to reduce the scaling violation in the

topological charge operator. Three types of (c0;c1) are investigated.

(c0;c1) = (1;0) Naive-type; (2.8)

= (5=3;�1=12) Symanzik-type; (2.9)

= (3:648;�0:331) Iwasaki-type: (2.10)

Figure 1 displays c1 dependence of the topological charge on a single con�guration smoothed by

Wilson �ow. The topological charge with Symanzik-type coef�cients has the smallest deviation

from an integer. Since the deviation is originated from the �nite lattice spacing, it implies an

ef�cient reduction of the scaling violation by Symanzik-type operator. Calculations on other con-

�gurations show a similar tendency. Based on this result, Symanzik-type coef�cients are employed

in this work.

2.3 Smoothing

Three kinds of smoothing techniques are evaluated: cooling, smearing, and gradient �ow.

Smoothing is required to suppress noisy ultraviolet �uctuations, while keeping a topological struc-

ture. Although any smoothing is expected to give a consistent result in the continuum limit, it is

valuable to �nd a method that has the least lattice artifact.

Cooling eliminates ultraviolet noises by replacing each link variable such that the local action

is minimized [4]. For the local action, not only a naive plaquette action, but also Symanzik and

Iwasaki actions are employed with the coef�cients of Eq. (2.8)�(2.10).
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Figure 1: Improvement coef�cient c1 dependence of improved topological charge Qimprove on a single gauge

con�guration. Difference of Qimprove from an integer is plotted.

Another way of smoothing is smearing. APE smearing [5] is de�ned by

Unew
m (x) = ProjSU(3)

h

(1� a)Um(x)+
a

6
Sm(x)

i

;a = 0:6: (2.11)

Sm(x) = å
�n 6=m

Un(x)Um (x+n)U�
n (x+m) (2.12)

In addition, HYP smearing [6] is also examined.

Unew
m (x) = ProjSU(3)

"

(1� a1)Um(x)+
a1

6
å

�n 6=m

U
(2)
n ;m(x)U

(2)
m ;n(x+n)U

(2);�
n ;m (x+m)

#

; (2.13)

U
(2)
m ;n(x) = ProjSU(3)

"

(1� a2)Um(x)+
a2

4
å

�r 6=m ;n

U
(3)
r;mn(x)U

(3)
m ;nr(x+r)U

(3);�
r ;mn(x+m)

#

;(2.14)

U
(3)
m ;nr(x) = ProjSU(3)

"

(1� a3)Um(x)+
a3

2
å

�s 6=m ;n ;r

Us (x)Um (x+s)U�
s (x+m)

#

; (2.15)

a1 = 0:75;a2 = 0:6;a3 = 0:3: (2.16)

Smeared gauge �elds are projected back to SU(3) by Maximum SU(3) projection.

Proj
maxSU(3)
SU(3) (Um(x)) = max

Unew
m (x)2SU(3)

Re Tr (Unew
m (x)U�

m (x)): (2.17)

An alternative smoothing is given by the gradient �ow [7]. The evolution of the gauge �eld is

determined by

¶tVm(x; t) = �Vm(x; t)
¶S

¶Vm (x)
; (2.18)

Vm(x; t = 0) = Um(x); (2.19)

where t is the �ow time, and S is an action without its coupling constant. Similar to the cooling

case, plaquette, Symanzik, and Iwasaki actions are employed. The �ow equation is solved by the

fourth order Runge-Kutta in the commutator-free method [8]. The Runge-Kutta step size dt is

chosen to be 0:02. The systematic error associated with discretization of the �ow time is de�nitely

below the statistical error.
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