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1. Introduction

A topological charge is one of the most fundamental quantity in QCD. It characterizes the

vacuum structure. Lattice QCD is a main tool in the study of the topological charge [1]. Lattice

QCD allows us to perform a nonperturbative analysis in a systematic way.

The topological charge is often measured with a gluonic field strength operator on the lattice.

Though it suffers from noisy ultraviolet fluctuations, a smoothing technique tames them so that a

discernible signal of the topological charge can be obtained. Cooling or smearing have been used

for smoothing gauge fields. Recently, a gradient flow is also employed. In contrast to the traditional

cooling and smearing, the gradient flow has an advantage that it provides a continuous change of

the gauge field. The gradient flow accomplishes a better control of smoothing.

Alternatively, the topological charge can be calculated with a fermionic definition. The topo-

logical charge is determined, for example, by the index theorem with the overlap-Dirac operator. A

clear advantage of the fermionic definition is that the result is guaranteed to be an integer. A subtle

point, on the other hand, is the integer values depend on the choice of the definition, due to a finite

lattice spacing. In the case of the overlap-Dirac operator, a value of the topological charge occa-

sionally changes according to a parameter in the formulation. Consistency check of the topological

charges in the fermionic and gluonic definitions would be helpful as an estimator of the scaling

violation.

In this work, topological charges are computed with gluonic operators on N f = 2 topology

fixed gauge configurations. The measurements are performed using several smoothing techniques.

Cooling with plaquette and improved local actions, APE and HYP smearing, as well as gradient

flows are employed. The results are compared with each other, and with the values obtained using

the overlap-Dirac operator. Similar attempts are reported in Refs. [2].

2. Setup

2.1 Gauge configuration

Measurement of the topological charge is performed on N f = 2 gauge configurations provided

by JLQCD Collaboration [3]. The lattice size is 163 ×32 at the lattice spacing of a = 0.118(2) fm.

The gluon action is Iwasaki-type improved gauge action,

Sg = β

(

c
g
0 ∑

x,µ<ν

Pµν(x)+ c
g
1 ∑

x,µ ,ν

Rµν(x)

)

, (2.1)

where β = 6/g2
0, c

g
0 = 3.648, c

g
1 =−0.331. The quark action is an overlap-Dirac fermion action,

Sq = q̄Dov(m)q, (2.2)

Dov(m) =
(

m0 +
m

2

)

+
(

m0 −
m

2

)

γ5sgn(HW(−m0)),HW(−m0) = γ5DW(−m0), (2.3)

where m is the bare quark mass. DW(−m0) is the Wilson operator with a negative mass, −m0 =

−1.6. Furthermore, unphysical Wilson fermion ψ with a negative mass as well as twisted mass

terms are added to fix the topological charge defined by the index theorem Qindex,

δSW = ψ̄DW(−m0)ψ +φ†(DW(−m0)+ iµγ5τ3)φ , (2.4)
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β m Qindex # conf MD time

2.30 0.05 -2 50 2500

Table 1: Parameters of the gauge configurations. Molecular Dynamics time is the number of trajectories

multiplied by the trajectory length.

where φ is a pseudofermion, and µ is the twisted mass parameter. µ = 0.2 is employed in the

configuration generation. Each configuration is separated by 100 trajectories with its trajectory

length 0.5. The main simulation parameters are summarized in Table 1.

2.2 Gluonic topological charge operator

The topological charge is measured using a gluonic field strength.

Qimprove = c0Q1×1 + c1Q1×2, (2.5)

Q1×1,2 =
1

32π2 ∑
µ ,ν ,ρ ,σ

εµνρσTr F
1×1,2
µν F

1×1,2
ρσ , (2.6)

F
1×1,2
µν = −

i

4
[C1×1,2

µν ]AH,CAH
µν =

1

2i

(

Cµν −C†
µν

)

, (2.7)

where C1×1
µν is the cloverleaf constructed with 1× 1 plaquettes, and C1×2

µν with 1× 2 rectangular

loops. The improvement coefficients c0 and c1 can be tuned to reduce the scaling violation in the

topological charge operator. Three types of (c0,c1) are investigated.

(c0,c1) = (1,0) Naive-type, (2.8)

= (5/3,−1/12) Symanzik-type, (2.9)

= (3.648,−0.331) Iwasaki-type. (2.10)

Figure 1 displays c1 dependence of the topological charge on a single configuration smoothed by

Wilson flow. The topological charge with Symanzik-type coefficients has the smallest deviation

from an integer. Since the deviation is originated from the finite lattice spacing, it implies an

efficient reduction of the scaling violation by Symanzik-type operator. Calculations on other con-

figurations show a similar tendency. Based on this result, Symanzik-type coefficients are employed

in this work.

2.3 Smoothing

Three kinds of smoothing techniques are evaluated: cooling, smearing, and gradient flow.

Smoothing is required to suppress noisy ultraviolet fluctuations, while keeping a topological struc-

ture. Although any smoothing is expected to give a consistent result in the continuum limit, it is

valuable to find a method that has the least lattice artifact.

Cooling eliminates ultraviolet noises by replacing each link variable such that the local action

is minimized [4]. For the local action, not only a naive plaquette action, but also Symanzik and

Iwasaki actions are employed with the coefficients of Eq. (2.8)–(2.10).
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Figure 1: Improvement coefficient c1 dependence of improved topological charge Qimprove on a single gauge

configuration. Difference of Qimprove from an integer is plotted.

Another way of smoothing is smearing. APE smearing [5] is defined by

Unew
µ (x) = ProjSU(3)

[

(1−α)Uµ(x)+
α

6
Σµ(x)

]

,α = 0.6. (2.11)

Σµ(x) = ∑
±ν 6=µ

Uν(x)Uµ (x+ν)U†
ν (x+µ) (2.12)

In addition, HYP smearing [6] is also examined.

Unew
µ (x) = ProjSU(3)

[

(1−α1)Uµ(x)+
α1

6
∑

±ν 6=µ

U
(2)
ν ;µ(x)U

(2)
µ ;ν(x+ν)U

(2),†
ν ,µ (x+µ)

]

, (2.13)

U
(2)
µ ;ν(x) = ProjSU(3)

[

(1−α2)Uµ(x)+
α2

4
∑

±ρ 6=µ ,ν

U
(3)
ρ;µν(x)U

(3)
µ ;νρ(x+ρ)U

(3),†
ρ ,µν(x+µ)

]

,(2.14)

U
(3)
µ ;νρ(x) = ProjSU(3)

[

(1−α3)Uµ(x)+
α3

2
∑

±σ 6=µ ,ν ,ρ

Uσ (x)Uµ (x+σ)U†
σ (x+µ)

]

, (2.15)

α1 = 0.75,α2 = 0.6,α3 = 0.3. (2.16)

Smeared gauge fields are projected back to SU(3) by Maximum SU(3) projection.

Proj
maxSU(3)
SU(3) (Uµ(x)) = max

Unew
µ (x)∈SU(3)

Re Tr (Unew
µ (x)U†

µ (x)). (2.17)

An alternative smoothing is given by the gradient flow [7]. The evolution of the gauge field is

determined by

∂tVµ(x, t) = −Vµ(x, t)
∂S

∂Vµ (x)
, (2.18)

Vµ(x, t = 0) = Uµ(x), (2.19)

where t is the flow time, and S is an action without its coupling constant. Similar to the cooling

case, plaquette, Symanzik, and Iwasaki actions are employed. The flow equation is solved by the

fourth order Runge-Kutta in the commutator-free method [8]. The Runge-Kutta step size dt is

chosen to be 0.02. The systematic error associated with discretization of the flow time is definitely

below the statistical error.
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Figure 2: Smoothing step dependence of Qimprove using cooling (top panels), smearing (middle panels), and

gradient flow (bottom panels).

2.4 Results

Figure 2 illustrates cooling and smearing step dependence of the improved topological charge.

The flow time dependence is also plotted. The flow time is multiplied by a factor of three, which

is expected from a perturbative analysis [9]. In every case, the topological charge has an integer

value with a sufficiently large number of steps. A small number of smoothing steps leads to a

fake plateau i.e. a semi-stable value of the topological charge. The number of smoothing steps is

determined to satisfy the admissibility condition, max[ReTr(1−Uplaq)]< 0.067 [10, 11]. In Fig. 3,

Wilson flow time dependence of the plaquette is shown. No jump of the topological charge seem to

be triggered, if the admissibility condition is fulfilled. It should be mentioned max[ReTr(1−Uplaq)]

does not always decrease as the flow time grows, though the value summed over the spacetime falls

off monotonically.

Figure 4 presents histograms of the improved topological charges. Since the topological charge

determined by the index Qindex is fixed in the configuration generations, the histogram is expected to

have a sharp peak around Qindex, supposing the scaling violation is small. The histograms obtained

by cooling with improved local actions show the expected behavior. Almost all of the topological

charges agree with Qindex. On the other hand, cooling using the plaquette action has a broad his-

togram. It implies a relatively large lattice artifact in the unimproved cooling method. Analogous

trends are observed in other smoothing procedures. HYP smearing has a narrow histogram, while

APE smearing does not. Symanzik and Iwasaki flows form a sharp peak in the histogram. On the

contrary, Wilson flow brings a wide peak. Improved smoothing methods leads to higher consis-
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Figure 3: Wilson flow time dependence of maximum of (1− plaquette) (left panel), and the value summed

over the spacetime volume (right panel).

tency with Qindex, indicating the scaling violation in the topological charge is suppressed well by

the improvement.

2.5 Conclusion

Systematic comparison of topological charges is presented. Topological charges are measured

on N f = 2 topology fixed configurations. Several smoothing techniques are evaluated using a

gluonic topological charge operator of Symanzik-type coefficients, which give a topological charge

with the smallest deviation from an integer.

Cooling with improved actions, HYP smearing, and improved gradient flows are found to be

advantageous. More than 90% of the topological charges are consistent with those obtained by the

index theorem. It indicates their lattice artifacts are reduced efficiently. On the other hand, cooling

with plaquette action, APE smearing, and Wilson flow lead to partial matches. The agreement is

limited to 70-80%. Scaling violations seem to be comparatively large in these smoothing methods.

Scaling properties as well as finite size effects of the topological charge have not been inves-

tigated. It is important to estimate them, but is beyond the scope of this work due to limitation of

the gauge configurations. The gauge configurations have been generated at a single lattice spacing

and spatial volume. These evaluations are left for the future work.
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