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We present a dual representation for the partition function of 2-dimensional scalar quantum elec-
trodynamics with a topological term (θ -term). In the dual representation the complex action
problem at non-zero θ is absent, which is an obstacle for Monte Carlo simulations in the conven-
tional form of the model. We discuss the technical aspects of the dual representation and show
that a dual Monte Carlo simulation can be implemented. As a first application we demonstrate
how the 2π-periodicity of physical observables is recovered in a suitable continuum limit.
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1. Introduction

When a topological term (θ -term) is coupled to QCD (and some other theories), the action has
a non-vanishing imaginary part. The Boltzmann factor can no longer be interpreted as a probability
distribution and the theory is not directly accessible with importance sampling methods. From a
technical point of view this “complex action problem” is similar to the one encountered in systems
with non-zero chemical potential. Recently the complex action problem has been solved for some
systems by rewriting their partition sum in terms of dual variables where the partition sum has only
real and positive terms and a Monte Carlo simulation is possible (see, e.g., [1]).

Here we apply the dual approach to scalar QED2 with a topological term, i.e., the scalar
Schwinger model. We show that also a quartic self-interaction of the scalars can be included,
such that the theory can also be viewed as the abelian gauge Higgs model in two dimensions. We
show that the lattice version of this model can be mapped to a dual representation where also for
finite vacuum angle θ the partition sum has only real and positive contributions. In terms of the
dual variables a Monte Carlo simulation becomes possible and the main part of this contribution is
dedicated to the technical aspects of the dualization and the algorithm.

Since the θ -parameter couples to a topological charge which is integer valued in the continuum
limit, all observables should be 2π-periodic in θ in that limit. As a first physical result we show
that this is indeed the case when taking a properly defined continuum limit.

The model under consideration has been studied from various points of view, e. g., [2] and also
in higher dimensions [3]. However, in these studies the complex action problem was overcome only
partially, restricting the accessible region of the θ angle to a small interval or even to zero. A study
related to our future aims can be found in [4], where the behavior of topological objects (vortices) in
different phases analogous to type-I and type-II superconductors was investigated. This, however,
was a classical analysis and to our knowledge there have not been any simulations of the quantized
theory. Some rigorous results for this model can be found in [5].

2. Formulation of the model

In the conventional representation the Euclidean continuum action for the scalar Schwinger
model with a quartic self interaction (U(1) gauge-Higgs model in 2-d) is given by

S =
∫

d 2x
[
(Dµφ

∗)(Dµφ)+m2
φ
∗
φ +λ (φ ∗φ)2 +

β

4
FµνFµν

]
, (2.1)

with the covariant derivative Dµ = ∂µ + iAµ , the field strength tensor Fµν = ∂µAν−∂νAµ , the mass
parameter m, the self-interaction coupling of the matter fields λ and the inverse gauge coupling β .

The topological term (θ -term) involves the topological charge Q, which is given by

Q =
1

4π

∫
d2x εµνFµν =

1
2π

∫
d2x F12 . (2.2)

The partition sum of the model is Z =
∫

D [A] D [φ ] e−S−iθ Q. Obviously the Boltzmann factor is
complex for θ 6= 0 and the theory has a complex action problem.
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For the lattice simulations we have to define the model on a two dimensional Ns×Nt space-
time lattice Λ with periodic boundary conditions for all fields. We split the action S into gauge and
matter parts, i.e., S[U,φ ] = SG[U ]+SM[U,φ ]. For the gauge part we use the Wilson gauge action

SG[U ] =−β

2 ∑
x∈Λ

[
U p

x +U p ∗
x
]
. (2.3)

The plaquette variables U p
x are given by the usual product of the link variables Ux,ν ∈ U(1), i.e.,

U p
x =Ux,1Ux+1̂,2U∗

x+2̂,1
U∗x,2. The matter part can be discretized as (κ ≡ 4+m2)

SM[U,φ ] = ∑
x∈Λ

[
κ|φx|2 +λ |φx|4−∑

ν

(
φ
∗
x Ux,νφx+ν̂ +φxU∗x,νφ

∗
x+ν̂

)]
. (2.4)

There exist various approaches for the discretization of the topological charge Q on the lattice.
For the dualization we explore here, the so-called field theoretical definition turns out to be the
best choice, i.e., a direct discretization of the continuum charge (2.2). Writing the link variables as
Ux,ν = eiAν (x) (the lattice spacing is set to a = 1 throughout this paper), the plaquette reads U p

x =

ei(A1(x)+A2(x+1̂)−A1(x+2̂)−A2(x)) and after expansion in small Aν one finds U p
x = 1+ iF12(x)+O(A2).

A suitable combination of U p
x and U p ∗

x then yields the field theoretical definition of the topological
charge on the lattice,

Q[U ] =
1

i4π
∑
x

[
U p

x −U p ∗
x
]
. (2.5)

Putting things together we arrive at the following form of the partition function

Z =
∫

D [U ]D [φ ] e−SG[U ]−SM [U,φ ]−iθ Q[U ] =
∫

D [U ]D [φ ] e−SM [U,φ ] eη ∑x U p
x eη ∑x U p ∗

x , (2.6)

with

η =
β

2
− θ

4π
, η =

β

2
+

θ

4π
and

∫
D [U ]D [φ ]≡∏

x

∫
C

dφx ∏
x,ν

∫
U(1)

dUx,ν . (2.7)

It is obvious, that there is a complex action problem in Eq. (2.6) for non-zero values of the θ

angle (then η 6= η ), i.e., the Boltzmann factor acquires a phase and is therefore not suitable as a
probability weight for importance sampling.

3. Dual Representation

We can write the partition function as

Z =
∫

D [U ] ∏
x

eηU p
x

∏
x

eηU p ∗
x ZM[U ] , ZM[U ] =

∫
D [φ ] e−SM [U,φ ] , (3.1)

where ZM[U ] is the partition function of the matter fields for a given gauge configuration. This
partition sum can be rewritten to dual variables along the way outlined in [6]. ZM[U ] assumes the
form of a sum over closed loops that are represented by integer link variables lx,ν ∈ Z, l̄x,ν ∈ N0

which are subjects to constraints (see below). The configurations of these link variables (i.e., of the
loops) are weighted with real and positive weight factors (also given below). The loops are dressed
with link variables Ux,ν along their contour.
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In a second step (compare again [6]) also the exponentials eηU p
x and eηU p ∗

x are expanded
using integer valued expansion indices assigned to the plaquettes of the lattice. The link variables
Ux,ν from the plaquettes, together with the link variables from the loops in ZM[U ] can then be
integrated out. This leads to new constraints that connect the integer valued link variables lx,ν
with the expansion indices for the plaquette terms eηU p

x and eηU p ∗
x . Thus, after a straightforward

modification of the derivation in [6], the partition sum (2.6) is exactly rewritten to its dual form:

Z = ∑
{l,l̄,p,p̄}

∏
x,ν

1
(|lx,ν |+ l̄x,ν)!l̄x,ν ! ∏

x
P(nx)

∏
x

η(|px|+px)/2+p̄x η
(|px|+px)/2−p̄x

(|px|+ p̄x)! p̄x!

∏
x

δ (px− px−2̂ + lx,1) δ (px−1̂− px + lx,2) δ

(
∑
ν

[
lx,ν − lx−ν̂ ,ν

])
.

(3.2)

We have introduced

P(nx)≡
∫

∞

0
dr rnx+1 e−κr2−λ r4

, nx ≡∑
ν

[
|lx,ν |+ |lx−ν̂ ,ν |+2(l̄x,ν + l̄x−ν̂ ,ν)

]
. (3.3)

The new degrees of freedom

lx,ν , px ∈ Z , l̄x,ν , p̄(x) ∈ N0 , (3.4)

are constrained due to the Kronecker deltas, coming from the phase factor integration. The p- and
p̄-fields are associated with the gauge fields and live on the plaquettes of the lattices, hence called
plaquette variables, and the l- and l̄-fields come from the matter fields and are attached to the lattice
links and therefore are called link variables.

We observe, that in the dual representation Z has only real and positive terms, as long as

β >
θ

2π
, (3.5)

i.e., as long as η is positive, and Monte Carlo studies with importance sampling are feasible in
the dual representation. The condition (3.5) does not impose a problem in practice, because one is
interested in the continuum limit, i.e., β → ∞ and thus arbitrary values of θ can be simulated.

4. Update algorithm for the dual simulation

Due to the constraints imposed on the dual variables, only certain admissible configurations
contribute in (3.2). However, the l̄- and p̄-fields do not appear in the constraints and thus can be
updated independently in the usual way with a local Metropolis update scheme. The p- and l-fields
mix in the constraints and a strategy to update them jointly is necessary. Here we use the following
local update scheme of the variables attached to a site x: We choose ∆ =±1 with equal probability
and offer a trial configuration l′, p′ as follows:

px→ p′x = px +∆ ,

lx,1→ l′x,1 = lx,1−∆ , lx+1̂,2→ l′x+1̂,2 = lx+1̂,2−∆ ,

lx+2̂,1→ l′x+2̂,1 = lx+2̂,1 +∆ , lx,2→ l′x,2 = lx,2 +∆ ,

(4.1)
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and all other l- and p variables remain unchanged. As can easily be checked also the trial con-
figuration l′, p′ obeys all the constraints (if the original configuration l, p did). Furthermore every
admissible configuration can be reached with the proposed changes, i.e., the update is ergodic. The
trial configuration is then accepted or rejected with a Metropolis step.

However, it turned out, that due to the close connection of the topological charge to configura-
tions with constant plaquette values, px = n,∀x, (see below), a special pure gauge update reduces
auto-correlation times considerably. Therefore we mix the update (4.1) with another update, which
involves only the dual gauge fields p: Again we choose ∆ =±1 with equal probability and update
the p-fields at all sites

px→ p′x = px +∆ ∀x , (4.2)

i.e., we cover the whole 2-torus with a sheet of p variables, all with the same value. Also this
trial configuration is accepted or rejected with a Metropolis step. We remark, that it would also be
straightforward to adopt the surface worm algorithm of [6] to the model studied here.

The algorithm has been thoroughly tested in the limit θ = 0 where we can use a Monte Carlo
simulation without complex action problem in the conventional representation of the model. We
also tested the algorithm in the case where we neglect the matter fields, i.e., the pure gauge case.
Here one can obtain exact analytical results by explicitly summing up (3.2). The only admissible
configurations in the pure gauge case are those with px = n,∀x and the partition sum can be ex-
pressed as a sum over modified Bessel functions. In both test cases we found perfect agreement
within error bars, and, although not systematically studied, the dual simulations always outper-
formed the conventional ones. This suggests the interpretation that the dual degrees of freedom
provide the physically more natural representation of the system.

5. Numerical Results

Bulk observables, i.e., various derivatives of the logarithm of the partition function with respect
to the parameters of the model, are most easily accessible and have a very simple form in terms of
the dual variables. In this exploratory study we focus on the expectation value of the plaquette

〈Re(�)〉 ≡ 1
Ns Nt

∂ lnZ
∂β

=
1

2 Ns Nt

[〈
|P|+P

2
+ P̄

〉
η
−1 +

〈
|P|−P

2
+ P̄

〉
η̄
−1
]
, (5.1)

and the topological charge

〈Q〉 ≡ 1
Ns Nt

∂ lnZ
∂θ

=
1

2 Ns Nt

[〈
|P|+P

2
+ P̄

〉
η
−1−

〈
|P|−P

2
+ P̄

〉
η̄
−1
]
, (5.2)

where we have defined

|P| ≡∑
x
|px| , P≡∑

x
px and P̄≡∑

x
p̄x . (5.3)

Here we study the observables as a function of θ for different values of the mass parameter
κ = 4, 5 and 10, which corresponds to a vanishing bare mass, a relatively small m and a large one.
All these parameters lead to the unbroken Coulomb phase (we set the self-coupling to λ = 1). The
inverse gauge coupling β is studied in an increasing sequence in order to approach the continuum
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limit, since a main point of this first series of simulations is to establish 2π-periodicity in θ since for
the field theoretical definition of Q which we use, 2π-periodicity can emerge only in the continuum
limit. Dimensional analysis suggests that the continuum- and thermodynamical limits have to be
taken in the following way

β → ∞ , |Ns Nt | → ∞ with
β

Ns Nt
= const. (5.4)
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Figure 1: Plaquette expectation value 〈Re(�)〉 of the full model versus the vacuum angle θ for three dif-
ferent values of the mass parameter κ . We show the approach to the continuum limit using β = 1.6,3.6,6.4
and 10.0 at fixed β/NsNt = 0.1, using 106 measurements for each parameter set. The statistical error is
computed with the jackknife method.
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We simulate lattices of size Ns =Nt = 4, 6, 8 and 10 at a fixed ratio β/Ns Nt = 0.1. Due to space
restrictions in Fig. (1) we only show the results for the plaquette. The plots nicely demonstrate that
〈Re(�)〉 becomes 2π-periodic in θ when approaching the continuum limit. It is also obvious,
that the plaquette shows only a very weak dependence on the mass parameter κ (in the Coulomb
phase) and is almost identical to the pure gauge case. The expectation value of the topological
charge shows a similar behavior, except that it is an odd observable in θ . We can conclude that the
topological charge in the dual formulation becomes integer valued in the combined continuum and
thermodynamical limit, which is reached very quickly, i.e., already on rather small lattice sizes and
moderately large β .

6. Summary

In this contribution it was demonstrated for the first time, that a complex action problem com-
ing from adding a topological term can be overcome by mapping the theory to dual variables. In
the dual representation the degrees of freedom are loops for the matter fields and plaquette occupa-
tion numbers for the gauge fields. We present a suitable update algorithm and in this exploratory
study analyze bulk observables, which have a particularly simple form in the dual representation.
We consider a suitable continuum and thermodynamical double-limit and demonstrate that the ob-
servables become 2π-periodic in that limit, indicating that the field theoretical definition of the
topological charge (which is not an integer at finite lattice spacing) is capable of reproducing the
expected θ -dependence.
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