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1. Introduction

As is well known, the chromoelectric flux tubes produced by a pair of static color charges in the
QCD vacuum represent an evidence for the confinement phenomenon [1]. Monte Carlo simulations
of lattice QCD [2–4] allow nonperturbative studies of the chromoelectric field distribution associ-
ated with the flux-tube structures. Within the dual superconductor model of QCD vacuum, conjec-
tured by ’t Hooft and Mandelstam [5], the condensation of color magnetic monopoles responsible
for the formation of flux tubes is seen in analogy to the formation of Cooper pairs in the BCS
theory of superconductivity. Whereas the dynamical condensation of color magnetic monopoles is
not explained by the dual superconductor construction, convincing lattice evidences for this con-
densation mechanism have been found [6]. In previous studies [4, 7], the flux-tube chromoelectric
field distribution has been investigated through the connected correlation function [3, 8]:

ρ
conn
W =

〈
tr
(
WLUPL†

)〉
〈tr(W )〉

− 1
N
〈tr(UP)tr(W )〉
〈tr(W )〉

, (1.1)

where UP = Uµν(x) is the plaquette in the (µ,ν) plane, connected to the Wilson loop W by a
Schwinger line L, and N is the number of colors (see Fig. 1 in Refs. [7]). In the naive continuum
limit [3] we have

ρ
conn
W

a→0−→ a2g
[〈

Fµν

〉
qq̄−

〈
Fµν

〉
0

]
, Fµν(x) =

√
β

2N
ρ

conn
W (x) . (1.2)

where 〈 〉qq̄ denotes the average in the presence of a static qq̄ pair and 〈 〉0 is the vacuum average.
In ordinary superconductivity tube-like structures arise as solutions of the Ginzburg-Landau

equations [9]. Within dual superconductivity, the formation of the chromoelectric flux tubes can
be interpreted as dual Meissner effect and the chromoelectric field distribution should resemble the
dual version of the Abrikosov vortex field distribution. This led to the proposal [4, 7] to fit the
transverse shape of the longitudinal chromoelectric field according to

El(xt) =
Φ

2π
µ

2K0(µxt) , xt > 0 , (1.3)

where Kn is the modified Bessel function of order n, Φ is the external flux, and λ = 1/µ is the
London penetration length. However, Eq. (1.3) is valid only for type-II superconductors, i.e. for
λ � ξ , ξ being the coherence length, which measures the coherence of the magnetic monopole
condensate. Several numerical studies [10] have, instead, shown that the confining vacuum behaves
much like a dual superconductor lying on the borderline between type-I and type-II superconduc-
tivity. Nonetheless, in Ref. [11] it has been suggested a different fitting function by exploiting the
results in Ref. [12]. There, from the assumption of a simple variational model for the magnitude of
the normalized order parameter of an isolated vortex, analytic expressions for magnetic field and
supercurrent density are derived, that solve the Ampere’s law and the Ginzburg-Landau equations.
By dual analogy

El(xt) =
φ

2π

1
λξv

K0(R/λ )

K1(ξv/λ )
, R =

√
x2

t +ξ 2
v , (1.4)

where ξv is a variational core-radius parameter. Equation (1.4) is equivalent to

El(xt) =
φ

2π

µ2

α

K0[(µ
2x2

t +α2)1/2]

K1[α]
, µ =

1
λ
,

1
α

=
λ

ξv
. (1.5)
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By fitting Eq. (1.5) to El(xt) data, one can extract both the penetration length λ and λ/ξv. The
Ginzburg-Landau κ parameter can then be obtained by

κ =
λ

ξ
=

√
2

α

[
1−K2

0 (α)/K2
1 (α)

]1/2
, (1.6)

and, the coherence length ξ can be deduced.
With the final aim of extending the analysis of flux tubes to the case of finite temperatures

(where the study of these structures is directly relevant to clarify the formation of cc̄ and bb̄ bound
states in heavy ion collisions), we cannot employ Eq. (1.1). Nevertheless, it suffices replacing,
in Eq. (1.1), the Wilson loop with two Polyakov lines (see Fig. 1). In addition, also the cooling
mechanism, previously used to enhance the signal-to-noise ratio, was replaced in our work by the
APE smearing procedure [13], to get rid of lattice artifacts. Preliminarily, a check that this method
gives results consistent with previous studies, adopting Wilson loops and cooling, is necessary, and
that is the subject of the present work (see Ref. [14] for more details). Indeed, numerical results
on the chromoelectric flux tubes in SU(3) pure gauge theory at zero temperature, obtained with
connected correlations built with Polyakov lines and smeared gauge links, are presented in what
follows.

Figure 1: The connected correlator given in Eq. (2.1) (subtraction in ρconn
P not explicitly drawn).

2. Flux tubes on the lattice

In order to explore the field configurations produced by a static qq pair, the following con-
nected correlation function was considered:

ρ
conn
P =

〈
tr
(
P(x)LUPL†

)
trP(y)

〉
〈tr(P(x)) tr(P(y))〉

− 1
3
〈tr(P(x)) tr(P(y)) tr(UP)〉
〈tr(P(x)) tr(P(y))〉

(2.1)

The two Polyakov lines are separated by a distance ∆. In the continuum limit we obtain the field
strength tensor, defined as [15]

Fµν (x) =

√
β

6
ρ

conn
P (x) . (2.2)

Wilson action with periodic boundary conditions and the Cabibbo-Marinari algorithm [16] com-
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Figure 2: (Left) El versus xt , in lattice units and in physical units, at β = 6.0 and for ∆ = 4a, after 10
smearing steps. Full line is the best fit using Eq. (1.5). (Right) The same, but for ∆ = 6a, after 30 smearing
steps. The procedure to fix the physical scale is explained in Sect. 3.

bined with overrelaxation were used, and simulations were performed on 204 lattices. We consid-
ered ∆ = 4a,6a,8a (a is the lattice spacing), and four different values of the gauge coupling β in
the range 5.9÷ 6.1. Measurements were taken every 10 updatings in order to reduce the autocor-
relation time. The jackknife method was used for the error analysis. The smearing procedure as
described in Ref. [13], with smearing parameter ε = 0.5, was employed to reduce statistical errors.
The flux tube is confirmed to be almost completely formed by the longitudinal chromoelectric field
El , which is constant along the flux axis and decreases rapidly in the transverse direction xt . To
probe El(xt), the plaquette in Eq. (1.5) was placed in correspondence to the middle point (labeled
by xt = 0) of the axis connecting the static sources and, then, moved along all possible transverse
spatial directions to distances xt > 0 from that axis. We fitted our data to Eq. (1.5) and the result
of the fit is shown in Fig. 2. To check rotational invariance, also noninteger distances were consid-
ered for ∆ = 4a, but, since the only effect of restricting the fit to integer distances was a reduction
of the reduced chi-square, χ2

r , in order to have less time-consuming simulations, we performed
measurements for integer transverse distances only, for all the other ∆ values.

The fit of our data to Eq. (1.5) was realized for each smearing step in the interval 16÷ 50.
The parameters φ , µ , and λ/ξv were extracted and the Ginzburg-Landau parameter κ was evaluated
through Eq. (1.6). Well-defined plateaux were found in the dependence of all parameters on the
number of smearing steps (see table 1 for the β=6.0 and ∆ = 6a case). In order to check for
contamination effects, on El , due to the proximity of the static color sources, we varied ∆. It was
found that the µ and λ/ξv values for ∆ = 4a were systematically higher than for ∆ = 6a,8a, while,
for all the parameters the values obtained for the ∆ = 6a and 8a were consistent within each other.
The large statistical errors affecting our estimates for ∆ = 8a led us to focus our analysis on the
case ∆ = 6a as a good compromise between the absence of contamination effects and a reasonable
signal-to-noise ratio. Figure 3 shows the behavior of φ , µ , λ/ξv and κ , for ∆ = 6a and for different
values of β , versus the number of smearing step. For β ≥ 6.0, our estimate for the parameters
seems to be independent of the number of smearing steps.
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Table 1: Summary of the fit values at β = 6.0 for ∆ = 6a.
Smearing φ µ λ/ξv κ χ2

r
16 6.191(141) 0.621(79) 0.309(95) 0.213(91) 0.018
18 6.218(125) 0.622(76) 0.287(82) 0.192(77) 0.011
20 6.227(109) 0.617(68) 0.277(72) 0.183(66) 0.010
22 6.222(98) 0.608(61) 0.271(64) 0.178(58) 0.010
24 6.207(88) 0.597(55) 0.269(58) 0.176(53) 0.011
26 6.184(81) 0.587(50) 0.269(54) 0.175(49) 0.011
28 6.155(75) 0.576(47) 0.269(51) 0.176(46) 0.011
30 6.122(70) 0.566(44) 0.270(48) 0.176(44) 0.010
32 6.087(66) 0.557(41) 0.271(46) 0.177(42) 0.009
34 6.049(63) 0.549(39) 0.271(45) 0.178(41) 0.008
36 6.011(60) 0.541(37) 0.272(43) 0.179(40) 0.007
38 5.973(58) 0.534(36) 0.273(42) 0.179(39) 0.005
40 5.935(56) 0.527(35) 0.274(42) 0.180(38) 0.004
42 5.897(54) 0.521(34) 0.274(41) 0.180(37) 0.003
44 5.859(53) 0.515(33) 0.275(40) 0.181(37) 0.003
46 5.822(51) 0.510(32) 0.275(40) 0.181(37) 0.002
48 5.786(50) 0.505(31) 0.276(39) 0.182(36) 0.002
50 5.751(49) 0.500(31) 0.277(39) 0.182(36) 0.001

3. Penetration and coherence lengths

The estimation in physical units of the London penetration depth, λ , and the coherence length,
ξ , is the final goal of our analysis. For this purpose it is, first of all, necessary to study the scaling
of the plateau values of aµ with the string tension. To do this, we expressed the values of aµ in
units of

√
σ , using the parameterization [17]:

√
σ(g) = fSU(3)(g

2)[1+0.2731 â2(g)−0.01545 â4(g)+0.01975 â6(g)]/0.01364 , (3.1)

â(g) =
fSU(3)(g2)

fSU(3)(g2(β = 6))
, β =

6
g2 , 5.6≤ β ≤ 6.5 ,

where

fSU(3)(g
2) =

(
b0g2)−b1/2b2

0 exp
(
− 1

2b0g2

)
, b0 =

11
(4π)2 , b1 =

102
(4π)4 . (3.2)

The use of the above parameterization allowed us also to compute and display, in Fig. 2, the trans-
verse structure of El(xt) in physical units. Figure 4 (Left) shows the ratio µ/

√
σ versus β . For

β ≥ 6.0, µ scales according to the string tension. Likewise, the dimensionless Ginzburg-Landau
parameter κ scales in the same interval of β (see Fig. 4 (Right)). Fitting, in both cases, the data in
the scaling window with a constant we get

µ√
σ

= 2.684(97) , κ = 0.178(21) . (3.3)

Assuming the standard value for the string tension,
√

σ = 420 MeV, from Eq. (3.3) we get

λ =
1
µ

= 0.1750(63) fm , ξ = 0.983(121) fm . (3.4)

Our determinations appear to be in good agreement with the results in Ref. [11] which were ob-
tained using the connected correlator built with the Wilson loop, and the cooling procedure. Type-I
superconductivity of the SU(3) vacuum is confirmed and agreement is found also with Ref. [18].
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Figure 3: (Up left) φ versus the smearing step. (Up right) The same for the inverse of the penetration length
µ . (Down left) The same for λ/ξv. (Down right) The same for the Ginzburg-Landau parameter κ . In all cases
∆ = 6a, and in the last three figures data have been slightly shifted along the horizontal axis for the sake of
readability.
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