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1. Introduction and motivation

At low temperatures quarks and gluons are confined within color singlessvat for suffi-
ciently high temperatures they become deconfined and behave as esséegapgprticles. The
order parameter for the confinement-deconfinement QCD transition is kB loop

L=(L(®) Oe /T, (1.1)

whereF is the quark free energy. On the lattice, the Polyakov loop is given by

N—1
L(X) = Tr tl:!) Ua(R,1) .

For temperatures below the critical temperatilige- 270 MeV (for the pure gauge theory) the
spacetime average Polyakov loop takes the vhlue0, i.e. Fy = +, whereas foll > T L # 0,
corresponding to &; = 0. Finite volume effects make the transitioriTat= T. smoother andl. has

a sharp transition from a small nonvanishing value to a number just beloarzhihat approaches
one from below ag is increased.

On the lattice, the Wilson gauge action is invariant under a center transformatiere
the temporal links on a hyperplaxg = congt are multiplied by an element of the center group
ze Z3={e 23 1,23}, In what concerns center transformations, the Polyakov loop is changed
according toL(X) — zL(X). By definition, the Polyakov loop is a gauge invariant quantity and,
therefore, a center transformation is not a gauge transformation. Gearsformations connect
gauge configurations which have exactly the same action and contribwhyaguhe QCD gen-
erating functional, but do not belong to the same gauge orbit, i.e. they acemoected by gauge
transformations.

The phase of the Polyakov loop can be used to characterize diffegions of the SU(3)
manifold of the gauge configurations. As shown in, for example, [1Tfer T; the localL (X) phase
is equally distributed among the possible values and it follows that the avefrtigeePolyakov loop
over all lattice sites i ~ 0 (center symmetric phase). On the other hand Tfor T the various
possible phases are not equally populatedlagd (spontaneous broken center symmetric phase).

The gluon propagator is a fundamental non gauge invariant QCD cdiorefanction that,
for example, can be used to define a potential for heavy quarkonium.ai®uis to investigate
how the Landau gauge gluon propagator changes Witlear the critical temperatuiie and how
it correlates with the phase of the Polyakov loop. In the present reporvil focus only on
pure gauge sector and ignore possible contributions from quarkshwieek explicitly the center
symmetry.

2. Lattice setup
At finite temperature, the Landau gauge gluon propagator has two indieeiorm factors,
D2, (6) = 6% (P}, Dr (04, @) + P, DL (0s, d)) - (2.1)

It is known that the electri®_ and magneti® form factors change witft, with D; changing
more dramatically thaDt — see e.g. [2, 3, 4] and references therein. For the present werk, th



Z(N) dependence of the Landau gauge gluon propagator near Tc Paulo J. Silva

Temp. L3xL P a Lsa

(MeV) (fm) (fm)

2659 54x6 5.890 0.1237 6.68

266.4 54x6 5891 01235 6.67 Temp. L3xL P a Lsa
266.9 54x6 5892 01232 6.65 (MeV) (fm) (fm)

2674 54x6 5893 0.1230 6.64 2692 73x8 6.056 0.09163 6.60
268.0 54x6 58941 0.1227 6.63 270.1 73x8 6.058 0.09132 6.58
2685 54x6 5895 0.1225 6.62 271.0 73x8 6.060 0.09101 6.55
269.0 54x6 5896 0.1223 6.60 2715 73x8 6.061 0.09086 6.54
2695 54x6 5897 0.1220 6.59 2719 73x8 6.062 0.09071 6.53
270.0 54x6 5898 0.1218 6.58 2724 73x8 6.063 0.09055 6.52
2710 54x6 5900 0.1213 6.55 2729 72x8 6.064 0.09040 6.51
2721 54x6 5902 0.1209 6.53 2733 73x8 6.065 0.09025 6.50
2731 54x6 5904 0.1204 650 2738 73x8 6.066 0.09010 6.49

Table 1: Simulation setup: coarse lattices. Table 2: Simulation setup: fine lattices.

two form factors were computed on lattices whose physical volume is ab¢i5fm)3; we have
considered coarser lattices, wih- 0.12 fm, and finer lattices, with ~ 0.09 fm. The lattice setup
is described in tables 1 and 2. All results reportedDprand D+ refer to 100 configurations per
ensemble.

The SU(3) gauge configurations were generated using a combinatiaabbath and over-
relaxation updates and, for each configuration, three independegé diings after the center
transformatiorJ(X,t = 0) = zU4(X,t = 0) were performed using all possible values Z3. For
each of the gauge fixed configurations the Polyakov ldgp= |L|€® was computed and the con-
figurations were classified according to

—n<9§—g (Sector -1, —g<9§g (Sector Q, g<9§n (Sector 1.

For a given configuration, the values IofX) are not clearly on top [1] of the possible phases of
Z(3) center symmetry. Indeed, aboVgthe values o, for each gauge fixed configuration, are
typically distributed around = 0,+2r/3. In this preliminary study we do not investigate the
effects associated with the introduction of cutoffs on the phase of the ay@op to identify the
various sectors.

For the computation of the gluon field and, therefore, the gluon propagetoely on the
usual definitions that can be found in e.g. [2, 5]. Naively, one couliincthat, in what concerns
the definition of the gluon field for sectotisl, one should subtract a constant term associated with
the phase of the Polyakov loop. However, when going to the momentum, spetea subtraction
only changes the zero momentum gluon field leaving all the other momenta gecha®n the
other hand, some authors (e.g. [6]) claim that in sectors other than theexsor, the links are not
close to the unit matrix, and therefore the usual formula to compute the gluidsfigot valid. In
figure 1 we report the distribution of the distance (as defined in [7]) otehgoral links to the
unit matrix for a configuration in the confined phase; the difference letlee various plots does
not support a different definition fok, (x) in the different sectors. We will report elsewhere [8]
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(a) Sector -1 (b) Sector 0 (c) Sector 1

Figure 1. Histograms exhibiting the distribution of the distancewsstn the temporal links and the unit
matrix; we use a 32x 6, B = 6.0 configuration withT = 324 MeV.

the discussion on the connection between the lattice link variable, the gluorafiélthe gluon
propagator for the various sectors.

In order to reduce lattice artifacts, we have performed a conic cut [3hfumenta above 1
GeV and take into account all lattice data below 1 GeV. The propagatacslukss below refer to
renormalized data chosen such that

Du7(K?) = ZRDEF (K?) = 1/

for a renormalization scale @f = 4 GeV. The form factor®, andD+t were renormalized indepen-
dently. The simulations show renormalization constants that are compatible withistandard
deviation for each of the form factors and between the diffeZ¢8} sectors.

3. Gluon Propagator near T¢

At finite temperature, the two form factors associated to the gluon propauate been com-
puted several times and their dependence Wittas been studied — see, for example, [2, 3, 4] and
references therein. Typically, the computation is performed either noh take account which
sector of the SU(3) manifold the configurations belong or projecting intoehesector.

Figures 2, 3, 4 and 5 show the propagators below and ahofa the various sectors. For
T < T, there is a slight enhancement of the longitudinal propagator it thsectors relative to the
0 sector. On the other hand, the transverse propagatbt isectors is slightly supressed. Above
the deconfinement transition, it is observed a huge enhancement of ¢hécdlerm factor and a
sizeable suppression of the magnetic component ig-theectors, relative to the 0 sector. Clearly,
aboveT, the propagators in each sector have different functional formsgstigg that the dynam-
ics associated with the configurations in each of the sectors of the SU(3pldasharacterized
by the phase of the Polyakov loop is also different. Furthermore, théésesmem to suggest that
one can use the difference between the propagators in the varioussdedigstinguish if a given
configuration is either on the confined or deconfined phase.

In order to test this hypothesis, one can look at the Polyakov loop sampéitaypyhfor tem-
peratures arount.. Figure 6 illustrates the correlation between the modulus of the Polyakov loop
andD, (0) measured in each sector of the configuration manifoldifer 2701 and 2738 MeV,
respectively. As observed, whélo| becomes smaller (confined phade),0) has a unique value
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Figure 2: Coarse lattices, beloW.
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Figure 3: Fine lattices, belowl.

for all sectors. On the other hand, whé&nbecomes largeB, (0) in sectorst1 decouple from the
0 sector values. Finally, in figure 7 we sh@y/(0) as a function ofl near the phase transition.

Figures 6 and 7 support the idea that the separation between the pgorpaganputed in
different sectors provide an indication if the configuration is in the codforedeconfined phase.

In some cases, the simulation mixes both the confined and deconfined ghagsgample can
be seen in the left plot of Fig. 6. For such cases, it is a sensible apptoatean the ensemble
by removing the configurations in the wrong phase (marked using a shadbergraph). In Fig.

7 we compare the dependencef(0) with T with and without cleaning. We observe that the
discontinuity inD_(0) gets stronger for clean ensembles. Certainly, this is an issue which can
change the conclusions reported recently in [4] about the nature ofitistion in the longitudinal
propagator at the critical temperature.
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Figure 5: Fine lattices, abové..
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D, (0) versus Polyakov loop D, (0) versus Polyakov loop
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Figure 6: Unrenormalized Polyakov loop sampling history Toe= 2710 MeV andT = 2738.0 MeV (fine
lattices).
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