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We smear Z(2) center vortices in lattice gauge configurations such as to recover thick vortices

with full SU(2) Yang-Mills information. In particular, we address the problem that using Z(2)

configurations in conjunction with overlap (or chirally improved) fermions is problematic due to

their lack of smoothness. Our method allows us to regain this smoothness and simultaneously

maintain the center vortex structure. We verify our method with various gluonic and fermionic

observables and find good agreement between smeared vortex configurations and full SU(2).†
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1. Introduction

The vortex model [1, 2, 3] assumes that the center of the gauge group is crucial for confine-
ment. The center degrees of freedom can be extracted from gauge field configurations by maximal
center gauge (MCG) and center projection [4]. These d.o.f. are dubbed P-vortices and can be
viewed as two-dimensional surfaces on the four-dimensional lattice. They are thought to approx-
imate objects already present in configurations before the extraction step. These latter objects are
called thick vortices, carry quantized magnetic center flux and are responsible for confinement ac-
cording to the vortex model. The extracted P-vortex surfaces are complicated, unorientable random
surfaces percolating through the lattice. These and other P-vortex properties are in good agreement
with the requirements to explain confinement, which was shown both in lattice Yang-Mills theory
and within a corresponding infrared effective model, see e.g. [4, 5, 6, 7, 8, 9]. The vortex model can
be applied to other infrared features of QCD not immediately related to confinement, such as the
topological properties of gauge fields. In particular it was shown how the topological susceptibility
present in QCD can be calculated from the extracted P-vortex surfaces [10, 11, 12] and vortices are
also able to explain chiral symmetry breaking [13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. This way
the vortex model provides a unified picture for the infrared, low energy sector of QCD explaining
both confinement and the chiral and topological features of the strong interaction. However, some
of the properties of full QCD are obscured in the P-vortex (vortex-only) configurations, especially
when it comes to topological properties in connection with fermions. In particular, we address the
problem of reproducing a finite chiral condensate in center projected (Z(2)) configurations, using
overlap (and chirally-improved) Dirac operators. Low-lying eigenmodes and also zero modes are
not found in these configurations; the spectra show a large eigenvalue gap for vortex-only configu-
rations. In [17] the reason for the large gap in the vortex-only case was shown to be connected to
the lack of smoothness of center-projected lattices, i.e. maximally non-trivial plaquettes - the vor-
tex plaquettes. In that case the exact symmetry of the overlap operator is strongly field-dependent,
and does not really approximate the chiral symmetry of the continuum theory.

In the present work, we want to introduce a new smearing method, in order to embed the
corresponding physics from Z(2) vortex configurations in full SU(2) configurations by smoothing
the thin vortices. We speculate that the infrared aspects of the QCD vacuum can be understood in
terms of thick center vortices, which can be derived from thin vortex structures.

2. Method

The idea is to smooth out the thin vortices to regain a finite thickness, i.e. we distribute the
center vortex flux of the vortex plaquettes, i.e. Tr Uµν = −1, to several (neighboring) plaquettes.
This thickens the vortices in the sense that the center flux is not restricted to a singular surface
but spread out over a few lattice spacings. On the original lattice, vortex structures are only a
few lattice spacings apart and smearing leads to distortions of the vortex structure. Hence, we put
the vortex configuration on a finer lattice. For Z(2) gauge links, the refinement procedure can be
defined straightforwardly and yields exactly the same vortex structure but on a finer lattice. The
refinement procedure is illustrated in Fig. 1. We double the number of links in each direction,
hence the lattice volume increases by a factor of 24 = 16. If the initial link was 1, we only insert
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two 1 links; however, if the initial link has value −1, we insert a 1 and a −1 link in forward
direction. The new link pairs are copied forward by half the initial lattice spacing in all orthogonal
directions, e.g. an x-link Ux(~x) = −1 at ~x = (x,y,z, t) gives Ũx = 1 at (x,y,z, t), (x,y+ 1/2,z, t),
(x,y,z + 1/2, t), . . ., (x,y + 1/2,z + 1/2, t + 1/2) and Ũx = −1 at (x+ 1/2,y,z, t), (x+ 1/2,y +
1/2,z, t), (x+1/2,y,z+1/2, t), . . ., (x+1/2,y+1/2,z+1/2, t +1/2). Just as refinement gives the
same vortex structure on the finer lattice, the inverse procedure, blocking, again gives the original
configuration. During blocking, the copies between the coarse lattice planes are thrown away and
the two refined links, e.g. Ũx(~x=(x,y,z, t)) and Ũx(~x=(x+1/2,y,z, t)), are multiplied to reproduce
the original Ux(~x = (x,y,z, t)) = 1 ·±1=±1 link. On the refined lattice, however, one now has the
advantage that deformations of the vortex surface within the original lattice spacing still yield the
correct vortex structure after blocking.

Figure 1: Refinement routine: Example of one −1 (fat z-) link in the upper cube of the left lattice part
giving eight −1 and eight 1 links in the refined (central) lattice part. Smeared blocking procedure: After
refinement and smearing the blocking is not performed starting at (1,1,1,1), the lower, left corner, but half an
original (i.e. one refined) lattice spacing forward in every space-time direction, i.e. (2,2,2,2) on the refined
lattice, indicated by the red arrow (the time direction is indicated by the fine lines connecting the space-like
cubes). Without vortex smearing between steps 2 and 3 the lattices before and after the whole procedure are
actually the same; with vortex smearing the re-blocked lattice gives a smeared version of the original lattice.

The goal is to distribute the center vortex flux −1 symmetrically among the refined plaquettes
making up the original vortex plaquette. Therefore we smear all four (refined) links within the
original vortex plaquette by individual link rotations. In Fig. 2 we show examples of link configu-
rations to distribute the center vortex flux exp iπ = exp−iπ =−1 uniformly among the four refined
plaquettes, each carrying one fourth of the initial center vortex flux. The uniform distribution is of
course only guaranteed if we apply all link rotations of ±π/4 and π/2 in the same U(1) subgroup.

Depending on the vortex structure, the plotted link configurations may still cause maximally
non-trivial plaquettes in directions orthogonal to the displayed plane. Hence we apply a gauge
rotation to the four smeared links, multiplying them with a random SU(2) vector at the central point
of the original vortex plaquette. Using this "2D gauge transformation" we can minimize the affected
plaquettes orthogonal to the original or refined vortex plaquette. This way we eliminate maximally
non-trivial plaquettes and get smooth vortex configurations on refined lattices. We finally block
these smeared lattices again in order to get smooth vortex configurations on the original lattice.
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dc

ba

Figure 2: Examples of link configurations giving uniform center vortex flux distribution among the four
refined plaquettes corresponding to the initial center vortex plaquette. The individual link rotations are given
by +π/2, ±π/4 and ±3π/4. Each refined plaquette carries one fourth of the initial center vortex flux; a),c)
exp iπ = −1 and b),d) exp−iπ = −1. In order to minimize the orthogonal plaquettes (the ones orthogonal
to the displayed plane) we apply "2D gauge transformations" (see text) at the central points of the plaquettes.

In terms of Z(2) lattices, we have seen that blocking is the exact inverse procedure to refine-
ment. Hence, blocking a refined lattice exactly gives us the same links and plaquettes present in
the original lattice, and therefore also the same vortex structure. Since our smearing routine only
changes links at half the initial lattice spacings, i.e. links dividing the original plaquettes into four
refined plaquettes, blocking trivially (the mentioned links are thrown away) restores the initial Z(2)
link configuration and therefore the original vortex structure again. However, if we do not block
the refined lattice starting at original lattice sites, but at new, refined lattice sites, more precisely
one refined (half an original) lattice spacing away from original lattice sites in every space-time
direction, as indicated in Fig. 1 by the red arrow, we have to multiply several smeared SU(2) links
instead of ±1s and end up with a SU(2) instead of a Z(2) configuration. This new, blocked con-
figuration now represents a smeared version of the original Z(2) lattice, since the smeared links are
derived from the original lattice after refinement. This procedure we will call "smeared blocking"
in the following, but we should note that the vortex structure extracted from the smeared blocked
lattices is not exactly the same as the original vortex configuration.

3. Results

In order to test our method we use 1000 Z(2) vortex configurations on 164 lattices, derived
from thermalized Luescher-Weisz SU(2) gauge field configurations on 84 lattices at coupling β =

3.3 (σlat = 0.1112± 0.0017, a = 0.1495± 0.0012fm) after direct maximal center gauge (MCG),
projection and Z(2) refinement.

In Fig. 3a) we display the twenty lowest-lying complex conjugate eigenvalue pairs of the
overlap Dirac operator [24], for center-projected, vortex smeared and original configurations. For
the spectra on the refined lattices, the eigenvalues are multiplied by a factor two, to account for
the refinement effect. The refined smearing completely removes the eigenvalue gap of the center
projected configurations and reproduces a finite number of (near-) zero modes. The spectrum for
configurations after the smeared blocking procedure approaches the original result very well.
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Figure 3: a) 20 lowest overlap eigenvalues for original (full) SU(2), Maximal Center Gauge projected Z(2)
and vortex smeared configurations. b) Scatter plot of fermionic and gluonic topological charge correlations
between original (full) vs. blocked vortex flux distribution smeared configurations.

If we want to recover the topological structure of the original (full) SU(2) configurations from
the vortex smeared configurations, we face ambiguities: The gluonic topological charge QT , given
by the integral of the gluonic charge density q(x) = 1

16π2 tr(FµνF̃µν), is measured after cool-
ing or standard (e.g. LOG) smearing, which destroys the relevant vortex structures. The fermionic
topological charge QF =Tr(γ5Dov) = n−−n+ = indDov is given by the difference of right- and left-
handed Dirac zero modes, but it is not necessarily correlated to the vortex topological charge [15],
since the vortex configurations do not represent a topological torus, as there are monopoles and
Dirac strings present. During cooling or (standard) smearing, monopoles and Dirac strings are
smoothed out or fall through the lattice and the toroidal topology is restored, hence FF̃ approaches
the index topological charge. However, the vortex finding property gets lost and the vortex topo-
logical charge quickly vanishes [21]. In view of the above concerns, it is not surprising that the
correlation of either fermionic QF or gluonic topological charge QT of the vortex smeared con-
figurations with the original topological charge is not very good, see Fig. 3b). The vortex topo-
logical charge of original and smeared configurations is essentially the same, since we deal with
identical vortex structures, however, vortex topological charge depends on the orientation of the
(thick) vortex surfaces. The (thin) Z(2) vortices lack any information of orientation and in order
to calculate the vortex topological charge, orientation is applied randomly to the vortex surfaces.
Similarly, during vortex smearing, by replacing Z(2) gauge links with rotations in the SU(2) space,
we automatically give the vortex surfaces a random orientation in color space, which influences
the gluonic topological charge. Since these two procedures are independent, we can not expect
that the smeared vortex configurations or the vortex topological charge in general give compara-
ble results for individual configurations. However, in [10] it was shown that the vortex topological
charge gives a good estimate of the topological susceptibility of the gauge field ensemble. The con-
cepts of blocking and smoothing during vortex topological charge calculation were also discussed
in [10]; the latter reduces vortex topological charge and susceptibility, since it removes short range
fluctuations of the vortex structure. On our original 84 (refined 164) lattices with original lattice
spacing a≈ 0.15fm, 1-2 (2-3) blocking steps seem appropriate during the vortex topological charge
calculation in order to arrive within the range of a physical vortex thickness of 0.4fm [4].
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In Fig. 4 we show the topological susceptibilities for original (full) SU(2) and smeared con-
figurations. The first thing we note is that for our original SU(2) gauge ensemble, the topolog-
ical susceptibilities from fermionic and gluonic topological charge definitions are not consistent,
〈Q2

F〉/V = (200MeV)4 and 〈Q2
T 〉/V = (160MeV)4 (averaging cooling and LOG smearing QT ),

presumably caused by our small original lattice volume of about (1.2fm)4. It should be noted,
however, that the vortex topological susceptibility reproduces these values with one, respectively
two blocking steps, averaging over the corresponding smoothing steps. Next, we see that for the
refined smeared configurations, the gluonic and vortex topological charges lead to much higher
susceptibilities, caused by the artificial vortex fluctuations introduced during the refined smearing
process. After blocking, however, the original results are reproduced, shown in Fig. 4b). The
gluonic topological susceptibilities after cooling and (LOG) smearing the vortex smeared config-
urations agree with the original (full) SU(2) values and vortex topological charge also matches
the original averages. Concerning fermionic topological susceptibility, the results are consistent
with gluonic and vortex topological susceptibilities. The refined version gives (260MeV)4, after
blocking we find (160MeV)4. The results show that vortices are indeed able to reproduce the topo-
logical susceptibility of full Yang-Mills theory, either via vortex topological charge or gluonic and
fermionic definitions after vortex smearing.
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Figure 4: Topological susceptibility from fermionic QF , gluonic QT and vortex topological charge QV for
original (full) SU(2) and vortex flux distribution smeared configurations. In a) we show all blocking and
smoothing steps for QV (vertical groups of points correspond to 0,1,2 and 3 blocking steps, the horizontal
splitting within the group indicates 0,1,2,3,4 or 5 smoothing steps, for details see [10]), in b) we show 1-2
blocking steps for 84 lattices, i.e. original and smeared blocked configurations, and 2-3 blocking steps for
refined (164) lattices, resulting in lattice spacings a ≈ 0.3− 0.6fm.

4. Conclusions and Outlook

We presented a method to smear Z(2) vortex configurations such as to embed vortex physics
into a full SU(2) gauge configuration framework. The main goal was to remove the eigenvalue gap
observed for overlap fermions in center-projected Z(2) vortex configurations. In order to main-
tain the original vortex structure we have to put the Z(2) configurations on finer lattices, where we
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can distribute the center vortex flux of the vortex plaquettes onto the refined plaquettes making up
the original vortex plaquette. Our method thickens the vortices in the sense that the center flux
is not restricted to a singular surface but spread out over a few lattice spacings. Besides refined
smearing, we also discuss a method to block the smeared lattice back to its original size. With
the various methods we can also reproduce topological properties of the original gauge fields; on
vortex smeared lattices, the different definitions of topological charge, i.e. fermionic, gluonic and
vortex topological charge, result in comparable susceptibilities. However, one-to-one correlations
of topological charge for individual configurations are not observed. The reason is that gluonic
topological charge definitions are usually applied after cooling or standard smearing, both trans-
forming Monte Carlo configurations into smooth gauge fields without or with strongly distorted
center vortex excitations. Thin center vortex gauge fields, i.e. Z(2) configurations, on the other
hand lack any information on the orientation of thick center vortices, which is crucial for topolog-
ical charge determination. During vortex smearing or vortex topological charge determination, we
apply random orientations to the vortex sheets and cannot expect to reproduce the original topo-
logical charge. However, earlier results and the analysis presented here and in more detail in [25],
show that vortex gauge fields reproduce the original topological charge susceptibility via vortex
topological charge definition and via fermionic or gluonic definitions after the introduced vortex
smearing methods.
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