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We present results for the K → ππ decay amplitudes for both the ∆I = 1/2 and 3/2 channels.
This calculation is carried out on 480 gauge configurations in N f = 2+ 1 QCD generated over
12,000 trajectories with the Iwasaki gauge action and non-perturbatively O(a)-improved Wilson
fermion action at a = 0.091fm, mπ = 280MeV and mK = 580MeV on a 323 ×64 (La = 2.9fm)
lattice. For the quark loops in the Penguin and disconnected contributions in the I = 0 chan-
nel, the combined hopping parameter expansion and truncated solver techniques work very well
for variance reduction. We obtain, for the first time with a Wilson-type fermion action, that
ReA0 = 60(36)× 10−8 GeV and ImA0 = −67(56)× 10−12 GeV for a matching scale q∗ = 1/a.
The dependence on the matching scale is weak.
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1. Introduction

Calculation of the K → ππ decay amplitudes for the neutral K meson system is very important
to quantitatively understand the ∆I = 1/2 rule and verify the prediction for the direct CP violation
parameter (ε ′/ε) in the Standard Model. However, a direct lattice calculation of the decay ampli-
tudes for the ∆I = 1/2 process was unsuccessful for a long time, due in part to a lack of a proper
finite-volume formalism, which has since been laid down in [1], and in part to large statistical fluc-
tuations from the disconnected diagrams. The results of a first direct calculation, on a 163 × 32
lattice, was reported by RBC-UKQCD collaboration in Ref. [2] at mπ = 422MeV with the do-
main wall fermion action. They also presented their preliminary results at a smaller quark mass
(mπ = 330MeV) on a 243 ×64×16 with the same fermion action at Lattice 2011 [3].

In the present work we calculate the K → ππ decay amplitudes for both the ∆I = 1/2 and 3/2
processes with the improved Wilson fermion action on a 323×64 lattice with mπ = 276MeV. Mix-
ings with four-fermion operators with wrong chirality are absent for the parity odd process even for
the Wilson fermion action due to the CPS symmetry [4]. A mixing to a lower dimension operator
does occur, which gives unphysical contributions to the amplitudes on the lattice. However, it can
be non-perturbatively subtracted by imposing a renormalization condition [5]. After the subtraction
one can calculate the physical decay amplitudes by the renormalization factor which has the same
structure as in the continuum; this is the same situation as for the domain wall fermion action. One
may expect a gain in the statistical error with the Wilson fermion action, since it is computationally
much less expensive than with the domain wall fermion action.

Our calculations are carried out on a subset of configurations previously generated by PACS-
CS Collaboration with the Iwasaki gauge action and non-perturbatively O(a)-improved Wilson
fermion action at β = 1.9 on a 323 ×64 lattice [6]. The subset corresponds to the hopping param-
eters κud = 0.13770 for the up and down quark, and κs = 0.13640 for the strange quark. The pa-
rameters determined from the spectrum analysis for this subset are a = 0.091 fm and La = 2.91 fm,
mπ = 275.7(1.5)MeV and mK = 579.7(1.3)MeV. We further generate gauge configurations at the
same lattice parameters to improve the statistics. The total number of gauge configurations used in
the present work is 480 which corresponds to 12,000 trajectories. We consider the decay of zero
momentum K meson to two zero momentum pions on these configurations. The energy difference
between the initial K meson and the final two-pion state takes a non-zero value, ∆E = 21MeV
for I = 2 and 36MeV for I = 0 on these configurations. In the present work we assume that this
mismatch of the energy gives only small effects to the decay amplitudes. Our preliminary results
have been reported at Lattice 2013 [7].

2. Calculation

In the continuum, the effective Hamiltonian of the K → ππ decay is given by a linear combina-
tion of 10 four-fermion operators Qi for i = 1,2, · · ·10 [8]. They can be classified by the irreducible
representation of the flavor SU(3)L ×SU(3)R symmetry group. Mixings between operators in dif-
ferent representations are forbidden. This is also valid for the Wilson fermion action due to the
CPS symmetry as shown in Ref. [4] and elaborated in Ref. [7]. However, the mixing to lower
dimensional operators has to be considered. Due to the CPS symmetry and the equation of motion
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Figure 1: Quark contraction of K → ππ decay.

of quark, there is only one operator with dim < 6, which is

QP = (md −ms) ·P = (md −ms) · s̄γ5d . (2.1)

This operator also appears in the continuum, but does not give a finite contribution to the physical
decay amplitudes, since it is a total derivative operator. This, however, is not valid for the Wilson
fermion action due to the explicit chiral symmetry breaking, and hence and the operator (2.1) gives
a non-zero unphysical contribution to the amplitudes on the lattice. This contribution should be
subtracted non-perturbatively, because the mixing coefficient includes a power divergence of the
lattice cutoff as 1/a2. In the present work we subtract it by imposing the relation [5],

⟨0|Qi |K⟩= ⟨0|Qi −αi ·P |K⟩= 0 , (2.2)

for each operator Qi. The subtracted operators Qi are then multiplicatively renormalized by the
renormalization factor having the same form as in the continuum.

We extract the amplitude for each operator from the time correlation function,

GI
i (t) =

1
T

T−1

∑
δ=0

⟨0|WK(tK +δ ) Qi(t +δ )W I
ππ(tπ +δ ) |0⟩ , (2.3)

where WK(t) is the wall source for the K0 meson and W I
ππ(t) is that for the isospin I two-pion

system. We impose the periodic boundary condition in all directions. The summation over δ ,
where T = 64 denotes the temporal size of the lattice, is taken to improve the statistics. We set
tπ = 0 and tK = 24. We also calculate the amplitudes for tK = 22 and 26 to investigate the “around-
the-world” effect which arises from the two-pion operator in the periodic boundary condition in the
time direction. We confirm that the effect is small for all channels. Thus we present results only for
tK = 24 in the following. The gauge configurations are fixed to the Coulomb gauge at the time slice
of the wall source t = tK +δ and tπ +δ for each δ . There are four types of quark contractions for
the time correlation function as shown in Fig. 1, where the naming of the contractions follows that
by RBC-UKQCD [2]. The mixing coefficient of the lower dimensional operator αi is evaluated
from the ratio,

αi =
T−1

∑
δ1=0

⟨0|WK(tK +δ1)Qi(t +δ1) |0⟩
/ T−1

∑
δ2=0

⟨0|WK(tK +δ2)P(t +δ2) |0⟩ , (2.4)
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in the large tK − t region.
For the calculation of the quark loop Q(x,x), that is the quark propagator starting from the

weak operator and ending at the same position in the type3 and type4 contractions, we use the
stochastic method with the hopping parameter expansion technique (HPE) and the truncated solver
method (TSM) proposed in Ref. [9]. The detail of application of those method to the K meson
decay has been discussed in Ref. [7].

3. Results

The results for the time correlation function (2.3) of Q2 for the ∆I = 1/2 process are plotted in
Fig. 2. We adopt K0 = −d̄γ5s as the neutral K meson operator, so our correlation function has an
extra minus from the usual convention. We find a large cancellation in Q2 between the contributions
from the operator Q2 and α2 ·P for both the type3 and type4 contractions. In (c) we find that the
contribution from the type4 contraction is similar in magnitude to that from the type1 contraction.
This appears different from the previous work by RBC-UKQCD collaboration with the domain
wall fermion action in Refs. [2, 3]. In (d) we compare the correlation functions calculated with
TSM and without TSM. We find that TSM significantly improves the statistics. The numerical cost
of TSM is about twice of that without TSM as was shown in Ref. [7]. Thus TSM is a very efficient
method.

The results for Q6 for ∆I = 1/2 are plotted in Fig. 3. Here also we find a large cancellation in
Q6 between the contributions of Q6 and α6 ·P for both the type3 and type4 contractions, as seen for
the operator Q2. In (c) a large cancellation is observed between the type1 and type2 contractions,
which is not the case for Q2. An efficiency of TSM is observed also for Q6 in (d).

We extract the matrix element MI
i = ⟨K|Qi |ππ; I⟩ by fitting the time correlation function (2.3)

with a fitting function,

GI
i (t) = MI

i /FLL ·NKNI
ππ · e−mK(tK−t)−EI

ππ (t−tπ )× (−1) , (3.1)

in which the K meson mass mK and the energy of the two-pion state E I
ππ are fixed at values obtained

from the correlation function of the K meson and the ππ → ππ process. The factor (−1) comes
from the convention of the K0 operator. The factors NK = ⟨0|WK |K⟩ and NI

ππ = ⟨0|W I
ππ |ππ; I⟩ are

estimated from the wall to wall propagator of the K meson and the two-pion. F I
LL is the Lellouch-

Lüscher factor [1] given by

(F I
LL)

2 = (4π)
(

EI
ππmK

p3

)(
p

∂δ I(p)
∂ p

+q
∂ϕ(q)

∂q

)
, (3.2)

where δ I(p) is the two-pion scattering phase shift for the iso-spin I channel at the scattering mo-
mentum p =

√
E2/4−m2

π , and ϕ(q) is the analytic function defined in Ref. [1] at q = p(2π/L).
For the I = 0 channel the scattering phase shift is not obtained with a sufficient statistics in the
present work. We leave a precise estimation of the factor to future work, and use the value for the
non-interacting case, (F I

LL|free)
2 = (2mKL3) · (2mπL3)2, in the present work. For the I = 2 chan-

nel we estimate the factor assuming δ 2(p) = p(∂δ 2(p)/∂ p) because of the small value of p. We
obtain F2

LL/F2
LL|free = 0.9254(62).
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Figure 2: Time correlation function of Q2 for the ∆I = 1/2 decay. (a) type3 contribution for Q2, α2 ·P and
Q2 = Q2 −α2 ·P, (b) type4 contribution, (c) contributions from each type of contractions for Q2, (d) total
correlation functions calculated with TSM and without TSM.

Figure 3: Time correlation function of Q6 for the ∆I = 1/2 decay following the same convention as in Fig. 2.
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q∗ = 1/a q∗ = π/a RBC-UKQCD Exp.
a(fm) 0.091 0.114 0.114
mπ (MeV) 280 330 422 140
ReA2 (×10−8 GeV) 2.426(38) 2.460(38) 2.668(14) 4.911(31) 1.479(4)
ReA0 (×10−8 GeV) 60(36) 56(32) 31.1(4.5) 38.0(8.2) 33.2(2)
ReA0/ReA2 25(15) 23(13) 12.0(1.7) 7.7(1.7)
ImA2 (×10−12 GeV) −1.14(13) −0.7467(83) −0.6509(34) −0.5502(40)
ImA0 (×10−12 GeV) −67(56) −52(48) −33(15) −25(22)
Re(ε ′/ε)(×10−3) 0.8(2.5) 0.9(2.5) 2.0(1.7) 2.7(2.6) 1.66(23)

Table 1: Results of the K → ππ decay amplitudes.

Our results of the matrix elements for several representative channels are given by

a3 MI=2
2 = (2.256±0.035)×10−3 (3.3)

a3 MI=2
7 = (9.85±0.11)×10−2 , a3 MI=2

8 = (3.242±0.037)×10−1 (3.4)

a3 MI=0
2 = (3.55±1.32)×10−2 , a3 MI=0

6 = (−1.96±1.06)×10−1 , (3.5)

with the lattice constant a, where we adopt t = [9,12] for the fitting range.
The renormalized matrix elements in the continuum M I

i (µ) are obtained from the bare matrix
elements on the lattice MI

j by multiplying with the renormalization factors, M I
i (q

∗)=∑ j Zi j(q∗a)M j.
In the present work we use the renormalization factor estimated by the tadpole improved perturba-
tion theory in the one loop order given in Ref. [10]. We choose two values q∗ = 1/a and π/a as the
matching scale from the lattice to the continuum theory in order to estimate the systematic error
coming from higher orders of perturbation theory. The physical decay amplitudes AI (I = 0,2) are
finally calculated as

AI = ∑
i j

Ci(µ)Ui j(µ,q∗)M I
j (q

∗) = ∑
i jk

Ci(µ)Ui j(µ,q∗)Z jk(q∗a)MI
k , (3.6)

where the coefficient functions Ci(µ) calculated at µ = mc = 1.3GeV in Ref. [8] are used. The
function U(µ,q∗) is the running factor of the operators Qi from the scale q∗ to µ for the number of
the active fermions NF = 3, which is also given in Ref. [8].

Our final results for the decay amplitudes are tabulated in Table. 1. We also list the results by
RBC-UKQCD Collaboration at mπ = 422MeV [2] and 330MeV [3], and the experiment values
for comparison. For Re(ε ′/ε), the lattice results for ε ′ divided by the experimental value |ε| =
2.228×10−3 are quoted.

We find that the dependence on q∗ is negligible for most of the decay amplitudes, but it is very
large for ImA2. Non-perturbative determination of the renormalization factor is necessary to obtain
a reliable result for this value.

We find a large enhancement of the ∆I = 1/2 process over that for ∆I = 3/2. However, our
result for A0, particularly for the imaginary part, still has a large statistical error so that we do not
obtain a non-zero result for Re(ε ′/ε) over the error. We observe that the results for A0 by RBC-
UKQCD Collaboration at a similar quark mass mπ = 330MeV [3] have smaller errors than ours.
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This is because they use a different two-pion operator for which the wall sources for the two pions
are separated by δ = 4 in the time direction, and set the fitting range closer to the two-pion source
than our case in extracting the matrix elements from the time correlation function. Improving
statistics by devising some efficient operator for the two-pion state is an important work reserved
for the future.

4. Summary

In the present work we have reported on our results of the K → ππ decay amplitudes for both
the ∆I = 1/2 and 3/2 channels with the Wilson fermion action. We have found that the stochastic
method with the hopping parameter expansion technique and the truncated solver method are very
efficient for variance reduction, yielding a first result for the I = 0 amplitude with the Wilson
fermion action.

We have been able to show a large enhancement of the ∆I = 1/2 process. Our result for A0 and
Re(ε ′/ε) still have large errors, however. Improving statistics by using some efficient operators for
the two-pion state is necessary to obtain more precise results.

Our calculation is carried out away from the physical quark masses, and the decay of the K
meson to two zero momentum pions is considered. Calculations at smaller quark masses with
physical kinematics, where the two pions in the final state carry finite momentum, is our next step.
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