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Here we discuss the determination of the I = 0 channel amplitude, A0, which, when combined

with A2, allows for the determination of ε ′, the measure of direct CP-violation in the Standard

Model. In this part I we provide an overview of the project and detail our use of G-parity bound-
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1. Introduction

Direct CP-violation is the decay of a CP-odd state to a CP-even state (or vice versa), and was

first observed in the decays of neutral kaons into two pions (CP-even). Due to indirect CP-violation,

the physical eigenstates KL and KS are admixtures of the CP-eigenstates, hence the isolation of

direct CP-violation in experimental measurements requires the observation of KL and KS decays in

two channels. Traditionally the isospin zero and two ππ final states are used to define a measure

of direct CP-violation as follows:

ε ′ =
ω√

2
(η2 −η0) , where ηI =

〈(ππ)I|T |KL〉
〈(ππ)I|T |KS〉

, ω =
〈(ππ)2|T |KS〉
〈(ππ)0|T |KS〉

, (1.1)

and T is the interaction matrix. The quantity ω is small: |ω | ∼ 1/22.5, mainly due to low-energy

strong interaction effects [2, 3, 4] (the so-called “∆I = 1/2 rule”).

The first principles Standard Model determination of ε ′ is very important as this quantity is

highly sensitive to Beyond the Standard Model sources of CP-violation, which are required in order

to describe the observed matter-antimatter asymmetry in the Universe. However, because non-

perturbative strong interactions play such an important role, reliable theoretical determinations of

ε ′ can only currently be performed using lattice methods.

The lattice measurements proceed as follows. Rewriting ε ′ in terms of the strong interaction

eigenstates, we obtain

ε ′ =
iωei(δ2−δ0)

√
2

(

ImA2

ReA2

− ImA0

ReA0

)

, (1.2)

where the amplitudes AI are defined via 〈(ππ)I|T |K0〉= AIe
iδI , and δI are the ππ-scattering phase

shifts. In terms of AI , ω = ReA2/ReA0. As these processes occur at a much lower energy scale

than the underlying weak interactions, we describe the interaction using the weak effective theory:

Heff
W =

GF√
2

V ∗
usVud

10

∑
i=1

[zi(µ)+ τyi(µ)]Qi(µ) , (1.3)

where zi and yi are perturbative Wilson coefficients, Qi are the effective four-quark operators, and

τ = −V ∗
tsVtd/VudV ∗

us. On the lattice one measures the matrix elements, 〈ππ|Qi|K〉, with energy-

conserving kinematics Eππ = mK . The operators are non-perturbatively renormalized at a high

energy-scale, typically 3 GeV, and perturbatively matched to the renormalization scheme of the

Wilson coefficients. The finite-volume amplitudes are then corrected to the infinite volume by

applying the Lellouch-Luscher factor [5].

The RBC and UKQCD collaborations have now successfully performed a physical calculation

of A2 [4]; the determination of the remaining amplitude, A0, is therefore of high priority. In practise

this measurement is significantly more difficult than that of A2 for two reasons, the first being that

the I = 0 ππ state mixes with the vacuum, giving rise to disconnected diagrams which introduce

significant statistical noise that must be overcome using advanced techniques; the solution of this

is discussed in part II [1] of these proceedings.

The second difficulty arises from the necessity of using physical kinematics: the Euclidean

time dependence of a general Green’s function has the form C(t) = ∑i aie
−Eit , with increasing

energies Ei, and lattice quantities are typically extracted using single-exponential fits to the large-

time behavior, where the ground-state dominates. For a standard lattice calculation with periodic

spatial boundary conditions, the lightest states of the I = 0 ππ system are first the vacuum and then

two pions at rest, for which the energy is 2×135MeV≪mK = 496 MeV. In order to match the kaon

and ππ energies we must therefore use the second excited state, which comprises two pions moving

back-to-back with momentum p = 2π/L, which can be tuned by varying the lattice size L. While
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the vacuum component can be explicitly subtracted, the stationary pion state cannot, hence such a

calculation requires multi-exponential fits to the time-dependence; these are typically very noisy,

especially when applied to measurements with disconnected diagrams. This can be circumvented

by changing one or more of the spatial boundary conditions from periodic to G-parity boundary

conditions (GPBC) [6, 7, 8, 9, 10].

2. G-parity Boundary Conditions

G-parity is the combined action of charge conjugation and an 180-degree isospin rotation about

the y-axis: Ĝ = Ĉeiπ Îy , where the hat-symbol is used to denote operators. At the quark level,

Ĝ

(

u

d

)

Ĝ−1 =

(

−Cd̄T

CūT

)

, (2.1)

where C = γ2γ4 in our conventions.

The charged and neutral pions are G-parity odd, thus applying the operation at a spatial bound-

ary is equivalent to imposing antiperiodic boundary conditions on the pions: π(x+L) = −π(x).
Therefore, with GPBC in n ≤ 3 directions, the lightest pion state has energy Eπ =

√

m2
π +n(π/L)2,

allowing us to instead tune the energy of the first excited state above the vacuum to match the kaon

energy, avoiding the necessity of multi-exponential fits.

The use of GPBC introduces a number of difficulties that have been identified and elaborated

upon in our previous publications [9, 10]. Here we summarize the issues and their solutions, and

we refer the reader to the aforementioned documents for more detailed discussion.

• The u and d fields couple to the regular gauge links U , whereas the ūT and d̄T fields couple

to the complex-conjugated links U∗. Consistency across the boundary therefore requires

that the gauge field obeys complex conjugate (equivalently charge conjugation) boundary

conditions. This necessitates the generation of entirely new ensembles for measurements

with GPBC. In section 4 we discuss in detail the ensembles that we have generated.

• Quark propagators spanning the boundary allow for unusual Wick contractions of the form

ūT d̄ and duT , resulting in a number of additional diagrams that must be evaluated for a given

quantity. For the determination of the K → ππ diagrams we wrote a symbolic computer

algebra system to automate the process, and compared to a separate by-hand determination.

• The boundary conditions explicitly break flavor (baryon number) conservation, although this

is not an issue for mesonic quantities.

• The neutral (and charged) kaon states, K0 = ds̄ and K̄0 = sd̄, are not eigenstates of the system

as GPBC transform the down quark but not the strange. In addition, modifications to the

strange quark Lagrangian are required to make it consistent with the charge-conjugation

boundary conditions of the gauge fields. The solution is to place the s-quark in an isospin

doublet with a fictional degenerate quark field s′ and impose GPBC on that pair. We can then

form an operator, K̃0 =
1√
2
(ds̄+ ūs′), which is G-parity even and hence projects only onto

states with zero momentum.

For the K → ππ interaction we use the physical four-quark operator, which acts solely on the

ds̄ component and hence only couples to the ūs′ through terms spanning the boundary that

are exponentially suppressed in the kaon mass and lattice size.

In order to revert to a three flavor simulation we must take the square-root of the s/s′ deter-

minant in the RHMC, which, due to the coupling between the fields at the boundary, results
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in a non-local determinant that potentially introduces universality violations; however, it can

be shown that such effects are exponentially suppressed in the lattice size at low energies.

In ref. [10] we performed several dynamical domain wall fermion (DWF) simulations with

GPBCs in 0,1 and 2 directions. We demonstrated that the pion states obey the continuum dispersion

relation, and that we could produce stationary kaon states whose masses are independent of the

number of G-parity twists within statistics. In addition we demonstrated that we could compute

the K − K̄ mixing amplitude, BK , in this framework and that this also remains independent of the

number of G-parity twists; this is a valuable test because the four-quark operator involved has a

similar form to that used for the K → ππ calculations. More recently we have used these ensembles

to compute the ∆I = 3/2 K → ππ amplitude, and successfully compared to results obtained with

the traditional approach used in refs. [2, 3, 4].

3. Implementation

We simulate with two independent fermion fields per lattice site and explicitly impose the

flavor-mixing at the lattice boundary. The implementation is written in the Columbia Physics Sys-

tem (CPS) with the BFM/Bagel package for optimized fermionic inversions on IBM BlueGene/Q

machines. Details of the implementation can be found in refs. [9, 10].

As we simulate with two fermion flavors we would naively expect a factor of two increase in

simulation cost. However, for DWF the situation is complicated by the necessity of using the square

of the Dirac matrix in the Hybrid Monte Carlo (HMC) algorithm in order to obtain a positive-

definite fermion matrix. For conventional 2+1f simulations with a single-flavor Dirac matrix the

resulting determinant is identical to that of two fermion flavors. However the G-parity Dirac matrix

mixes the flavor fields at the boundary and is therefore intrinsically two-flavor: using the square of

the Dirac matrix therefore results in a four-flavor determinant which must be square-rooted using

the Rational HMC (RHMC) algorithm. Similarly the four-flavor fermion matrix for the strange

sector must be fourth-rooted to revert to a single flavor.

The RHMC algorithm uses a rational approximation to the root that is valid over an eigen-

value range governed by the number of rational poles. As the light-quark Dirac matrix has a very

wide eigenvalue range it was necessary to use over 20 poles, a factor of two larger than a typical

strange-quark RHMC. The algorithm makes use of multi-shift conjugate gradient (CG) to perform

the necessary inversions, which for such a large number of poles has substantial linear algebra

overheads associated with updating the search and solution vectors. On a 512-node BG/Q machine

with our target local volume, the speed of the linear algebra (as well as the matrix multiplication)

is limited by the memory bandwidth, and as such achieves roughly 7.2 Gflops/s performance in

the multi-shift CG. We were able to partly redress this by performing the matrix multiplication in

single precision, halving the bandwidth usage. The downside is that the residual vector, which is

used for the stopping condition, quickly accumulates finite-precision errors such that the algorithm

either terminates too early or not at all. This was rectified by a ‘reliable update’ step every 200

iterations where the stored residual vector is replaced with the exact (double-precision) residual.

Coupled with maximal re-use of cached data to reduce the memory load in the linear algebra, we

have demonstrated a 70% improvement in performance during the RHMC update, reaching 12.3

Gflops/s. The resulting solution vectors were then used as inputs to a restarted single-precision CG

solve for each pole independently in order to guarantee satisfactory convergence.

In the future we intend to investigate the use of the ‘exact one-flavor action’ [11], for which

the fermion matrix is natively positive-definite and hence removes the need for RHMC for the light

quarks.

4



P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
3
6
5

Lattice Measurement of ∆I = 1/2 K → ππ Decays at Physical Kinematics: Pt. I C. Kelly

Figure 1: The s-wave ππ scattering phase shift δ0 as a function of the energy of the ππ state obtained

using Lüscher’s quantization condition for G-parity boundary conditions in 1,2 and 3 directions on our 323

spatial box. The error band is obtained by varying the inverse lattice spacing by its combined systematic and

statistical error. These are overlaid by phenomenological curves obtained from ref. [14]. The points at which

these curves meet are the allowed finite-volume two-pion energies. The vertical dotted and full orange lines

are the physical and measured kaon masses respectively, and the blue circle indicates the intercept at which

we can predict the (ππ)I=0 energy on our physical ensemble. The wide and thin vertical blue bands are the

measured values of the (ππ)I=2 energy with and without vacuum contributions respectively.

After our substantial developments in the evolution algorithms and code, we now have well-

tested, efficient BG/Q code.

4. Ensemble for K → ππ measurements

As initially described in ref. [10], we have generated an ensemble with a 323 × 64 lattice

volume, using DWF with the Iwasaki+DSDR gauge action at β = 1.75 (a−1 = 1.379(7) GeV [12])

and physical quark masses. Here the DSDR term in the gauge action is used to suppress the

dislocations or ‘tears’ in the gauge field that are largely responsible for the residual chiral symmetry

breaking on these coarse lattices. This ensemble is essentially the same as that used for our first

measurement of A2 [2, 3], although we have reduced the input quark mass such that the pion mass

is reduced from 171(1) MeV to 141.3(2.4) MeV (Eπ = 273.8(1.8) MeV). We have also changed

from Shamir to Möbius DWF, which with Möbius parameters b− c = 1 and b+ c = 32/12 allows

us to simulate with a fifth-dimensional extent of Ls = 12 while retaining the same physics as the

original Ls = 32 Shamir DWF simulation, resulting in a significant reduction in computational cost.

In figure 1 we plot the curves relating the lattice ππ energies to the s-wave scattering length

for GPBC in 1, 2 and 3 directions, obtained using Lüscher’s quantization condition [13] applied

to a 323 spatial box. We also plot phenomenological curves [14] of the dependence of the scatter-

ing length on the energy. The intercepts of these curves correspond to the allowed finite-volume

ππ energies. Based on this figure we previously determined that GPBC in three directions pro-

vide the closest match between the kaon and ππ energies for the I = 0 case. In practise we

found E(ππ)I=0
= 485(65) MeV (E(ππ)I=0

= 496(15) MeV without vacuum contributions), and

mK = 489.3(2.4) MeV. These measurements, and those given above, were determined using 24

configurations separated by 8 MD time units. Although the ππ energies are currently very noisy,

these preliminary results suggest that we are close to on-shell kinematics. Any remaining mismatch

introduces a systematic error that must be included in the final error budget. Note that we also ob-

serve quite impressive agreement between our computed I = 2 ππ energy, E(ππ)I=2
= 571.6(3.5)
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Figure 2: The evolution of the plaquette (top), chiral condensate (lower-left) and pseudoscalar condensate

(lower-right) measured on the first 650 configurations of our ensemble. The red line indicates the point at

which we began measurements (trajectory 300).

MeV, and the value of ∼ 570 MeV that one would estimate from figure 1. A more detailed ex-

planation of our measurement strategy and sources of systematic error is given in discussed in part

II [1] of these proceedings.

The generation of the ensemble has been performed using the USQCD 512-node BlueGene/Q

machine at BNL, as well as on various partitions of the ‘Mira’ BG/Q installation at Argonne via

a USQCD allocation. In the past year we have performed a substantial amount of tuning and op-

timization (as discussed above), such that one configuration now requires 6.8 hours per configura-

tion on a 512-node machine, down from 10.5 hours previously [10]. To date we have accumulated

over 900 trajectories (MD time units) with an 89% Metropolis acceptance. The plaquette, chi-

ral condensate and pseudoscalar condensate are shown in figure 2, from which we determine that

the ensemble has thermalized at around trajectory number 250; we therefore currently have ∼ 650

thermalized configurations. The measurements presented in these documents were performed from

configuration 300.

5. Conclusions

The measurement of the K → ππ amplitude in the I = 0 channel, A0, is the last remaining

step towards the first ab initio determination of the measure of direct CP-violation in the Standard

Model, ε ′. Comparison of this result with experiment may provide evidence of new sources of CP-

violation that could help explain the observed matter-antimatter asymmetry in the Universe. Due

to significant strong interaction effects, lattice methods must be used. The lattice calculation is

extremely difficult due to the presence of disconnected diagrams that vastly increased the statistical

noise, and also due to the requirement of an energy conserving decay process.
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We have detailed a successful technique for performing a measurement with energy conserv-

ing kinematics that does not rely on multi-exponential fits to the time dependence of noisy lattice

correlation functions, namely the use of G-parity spatial boundary conditions (GPBC). This ap-

proach engenders a number of technical difficulties, including the necessity of generating new

ensembles, that we have summarized in this document. We have also discussed our efforts at opti-

mizing the generation of G-parity gauge configurations. In a separate document [1] we discuss the

measurement itself.

We presented details of our 323 × 64× 12 Möbius domain wall ensemble with parameters

tuned to match an Ls = 32 Shamir DWF simulation with the same space-time volume. We use

GPBC in three directions. The input quark masses are such that our pion and kaon masses are nearly

physical: mπ = 141.3(2.4) MeV (Eπ = 273.8(1.8) MeV) and mK = 489.3(2.4) MeV, and the ππ

energy is Eππ = 485(65) MeV (Eππ = 496(15) MeV without the vacuum contributions) suggesting

that our K → ππ measurements are close to being on-shell. These results were obtained using 40

configurations separated by 8 MD time units. We have thus far generated over 900 trajectories,

with ∼ 650 thermalized, and we intend to continue configuration generation until the statistical

error on our A0 result are O(20%) or less.
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