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Delta I = 1/2 K→ ππ D.Zhang

1. Motivations

In the Standard Model, the measure of direct CP-violation in K→ ππ decay is determined by:

ε
′ =

iei(δ2−δ0)

√
2

ReA2

ReA0
(
ImA2

ReA2
− ImA0

ReA0
) , (1.1)

where δ2 and δ0 are the strong phase shifts from ππ scattering, A2 and A0 are the two decay
amplitudes corresponding to the two different final ππ isospin states. Using lattice QCD, A2 is
now calculated with physical kinematics and physical quark mass[1], with error bars less than
10%. To calculate ε ′, the only remaining unknown quantity is A0.

In the experimental measurement of K→ ππ decay, the evidence of direct CP violation comes
from the measurement (1− |η00/η+−|)/3 = Re(ε ′/ε) = (1.65± 0.26)10−3[2], where the two η

quantities are defined as

η+− =
A(KL→ π+π−)
A(KS→ π+π−)

(1.2)

η00 =
A(KL→ π0π0)

A(KS→ π0π0)
. (1.3)

The experimental error bar for Re(ε ′/ε) is about 16%. In order to compare that with the Standard
Model prediction of ε ′, a precise lattice calculation of A0 is needed.

The following sections will describe our strategies to calculate the physical decay amplitude
A0 as well as the current status of our calculation.

2. Measurement Strategy

Compared to previous lattice measurement, we use two new strategies: 1. G-parity boundary
condition, in order to give physical kinematics to the final two-pion state; 2. All-to-all propagators,
in order to control the vacuum fluctuation in disconnected diagrams.

2.1 G-parity boundary condition

G-parity boundary conditions are only used in the spatial directions. The G-parity conventions
we use are supposing a G-parity boundary in ẑ direction):

ux+Lẑ = (d̄xγ4γ2)
T =−γ4γ2d̄x

T (2.1)

ūx+Lẑ = (γ4γ2dx)
T =−dT

x γ4γ2 (2.2)

dx+Lẑ = −(ūxγ4γ2)
T = γ4γ2ūx

T (2.3)

d̄x+Lẑ = −(d̄xγ4γ2)
T = uT

x γ4γ2 . (2.4)

It can be shown that under this definition, SU(2) isospin symmetry is preserved and each pion
satisfies anti-periodic boundary conditions:

π
+
x+Lẑ = −π

+
x (2.5)

π
0
x+Lẑ = −π

0
x (2.6)

π
−
x+Lẑ = −π

−
x . (2.7)
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Under these boundary conditions, the single pion ground state now carries one half the lattice
momentum 2π

L . By carefully tuning the lattice size, we can give physical kinematics for the K→ ππ

decay.
One by-product of G-parity boundary conditions is extra Wick contractions. As a simple

example, the pion correlation function now looks like:

〈ππ〉= ūγ5d d̄γ5u+ ūγ5d d̄γ5u , (2.8)

where the first term is the usual contraction term, while the second term arises because the quark
lines could cross the G-parity boundary. Thus a d quark could change flavor and contract with a u
quark as shown in Figure (1). This extra contraction will not change the SU(2) iso-spin quantum
number since u and d have the opposite iso-spin. Because the G-parity boundary mixes the two
quark flavors, the number of possible Wick contractions grows rapidly as the correlation function
becomes more complicated. For example, the 〈ππ|Hw|K〉 matrix element could contain as many
as 256 different contractions.

u

d

−Cd̄T

CūT

Figure 1: G-parity boundary mixes the two quark flavors.

G-parity boundary conditions also put constraints on the quarks’ momenta. G-parity boundary
means that quarks will satisfy anti-periodic boundary conditions in a double-sized lattice, since

u(x+2L) =−γ4γ2d̄T (x+L) =−u(x) . (2.9)

This means quarks can only have momentum components of the form (n+ 1
2)

π

L , with n being an
integer, in each of the spatial directions with G-parity boundary conditions. Besides that constraint,
there is also constraint on the momentum direction. This can be seen by writing down a momentum
eigenstate of the quark field. A momentum eigenstate is defined by:

Tzψ̃(pz)T−1
z = eipzψ̃(pz), (2.10)

where the two-component ψ field is composed of the two SU(2) flavors: ψ =

(
ψ(0)

ψ(1)

)
=

(
d

CūT

)
and transforms when passing through the G-parity boundary as:

ψ(Lz) = iσ2ψ(0) (2.11)

ψ̄(Lz) = −iψ̄(0)σ2, (2.12)

and the translation operator Tz shifts the field operator by one unit:

Tzψ(z)T−1
z = ψ(z−1). (2.13)
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The momentum eigenstate of the quark field is then:

ψ̃(pz) =
Lz−1

∑
nz=0
{e−ipznzψ(nz)+ iσ2e−ipz(nz+Lz)ψ(nz)} (2.14)

= (1+ ie−ipzLzσ2)
Lz−1

∑
nz=0
{e−ipznzψ(nz)}. (2.15)

Translating in z-direction by one unit, the two components at (and right before) the G-parity bound-
ary in the bracket of equation (2.14) will transform into each other, leaving an overall phase factor
as in equation (2.10). Using pz = (nz +

1
2)

π

L , equation (2.14) becomes

ψ̃(pz) = (1+(−1)nzσ2)
Lz−1

∑
nz=0
{e−ipznzψ(nz)} (2.16)

With three G-parity twists, the prefactor in equation (2.16) changes from (1+(−1)nzσ2) to (1+
(−1)nxσ2)(1+(−1)nyσ2)(1+(−1)nzσ2). Since (1−σ2) is orthogonal to (1+σ2), all the nx,ny,nz

must have the same parity, otherwise ψ̃(pz) vanishes. Figure (2) shows the constraint that the
G-parity boundary puts on the quark momentum.

px

py

px

py

px

py

No G-parity twist 1 G-parity twist 2 G-parity twists

Figure 2: Large black dots: allowed quark momentums with periodic boundary conditions; small red dots:
allowed quark momentums with G-parity boundary conditions.

A consequence of this momentum constraint is that the cubic symmetry of the fermion action
is broken. Fortunately this shouldn’t affect the cubic symmetry of pion operator much. Even though
the quarks are required to carry momenta only in the ’diagonal’ direction as shown in Figure (2),
the pion’s momentum is not constrained in this way and G-parity boundary conditions are the same
as anti-periodic boundary conditions for the pion. However the cubic symmetry breaking at the
fermion action level affects the pion operator in a more subtle way: the difference between pion
operators with diagonal momentum and off-diagonal momentum lies in the quarks’ momenta in
each pion: the pion with momentum ~pπ = (1

2 ,
1
2 ,

1
2) can have two quarks each carrying the same

momentum of ~pquark = (1
4 ,

1
4 ,

1
4); but the pion with momentum ~pπ = (−1

2 , 1
2 ,

1
2) can’t have two

quarks each carrying the same momentum of ~pquark = (−1
4 , 1

4 ,
1
4), for the similar reason that the red

points in “2 G-parity twists” graph in Figure (2) only lie in the diagonal direction. As a result,
the pion with momentum ~pπ = (−1

2 , 1
2 ,

1
2) must have nonzero relative momentum between its two

quark components.
This difference between pion momentum eigenstates is caused by the G-parity boundary con-

ditions and should be exponentially suppressed when the lattice volume becomes large, due to
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the short distance nature of the strong interaction. On the 323× 64 ensemble that we are using,
this rotation symmetry breaking effect can’t be detected, by comparing norms of pion momentum
eigenstates as in Table (1).

p=(+,+,+) p=(-,+,+) p=(+,-,+) p=(+,+,-)
Eπ 0.19852(85) 0.19823(82) 0.19839(72) 0.19866(88)
Zπ 6.167(69)e+06 6.081(63)e+06 6.183(50)e+06 6.170(61)e+06

Table 1: The pion energy and norm, with different momentum directions. ’+’ corresponds to +3.14/L
momentum, ’-’ corresponds to -3.14/L momentum. Using 24 configuration.

2.2 All-to-all propagators

Qi
K

π

π

Figure 3: Disconnected diagram in K → ππ using all-to-all propagators. The two pions are separated in
time direction as another technique to reduce the vacuum fluctuation.[3]

One advantage of using all-to-all propagators is that it reduces noise. Since the ππ(I = 0) state
is involved in the I = 0,K → ππ decay process, disconnected diagrams occur. This is shown in
Figure (3), the ππ(I = 0) operator could connect to itself, and no quark line goes between the weak
operator and the ππ(I = 0) operator. As a result, the amplitude of the disconnected diagram falls
off slowly as the time separation increases, while the connected diagrams fall off much faster. So
even small fluctuations in the disconnected diagrams could deteriorate the overall signal a lot. All-
to-all propagators reduce the fluctuation in the disconnected diagrams, by reducing the coupling
between ππ(I = 0) state and the vacuum[4].

The all-to-all propagator method also saves time in computing quark propagators with various
momentum directions. When using the traditional method to calculate a momentum wall source
quark propagator, we need one solve for each quark momentum:

G(x′, t2; p, t1) = ∑
x

D−1(x′, t2;x, t1)e−ipx, (2.17)

where p is the quark momentum. In the presence of G-parity boundary in 3 spatial directions, the
allowed quark momenta are p = (n1,n2,n3)

2π

L ± (1,1,1) π

2L with ni being integers, and it turns out
that we need at least 4 of them to construct a two-pion operator which has the greatest degree of
cubic symmetry. In our current K→ ππ(I = 0) measurement job, it takes 30% of the total time to
compute the light quark propagator with only one momentum (on all 64 time slices). It’s obvious
that using all-to-all propagators saves a significant amount of computational time.

In contrast, an all-to-all propagator does not need any extra solves for multiple quark mo-
menta, because it already contains the propagation information from an arbitrary source point to an
arbitrary sink point, up to random noise[4]:

G(x′, t2;x, t1)≈∑
i

vi(x′, t2)wi†(x, t1), (2.18)
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and the quark momentum are included by doing a Fourier transform:

G(x′, t2; p, t1)≈∑
x

∑
i

vi(x′, t2)wi†(x, t1)e−ipx . (2.19)

Different quark momenta amount to different Fourier transforms, and no extra inversion of the
Dirac operator is needed.

K

π

π

K

π

π

Figure 4: Type3 diagram in K→ ππ , using all-to-all propagators

Though all-to-all propagators reduce fluctuation in disconnected diagrams and save inversion
time, they make the contractions expensive. As shown in Equation (2.18), when using all-to-all
propagators to evaluate the Green’s function, the time complexity is a linear function of the number
of modes. When evaluating a more complex diagram like in Figure (4), there are four quark lines
converging at the weak Hamiltonian operator, which requires the summation of four mode indices
(each quark line brings one mode index) and is not trivial to do. The algorithm we use to evaluate
the diagrams in K → ππ(I = 0) has a time complexity of O(V ∗N2), where V is the 4D volume
and N is the number of modes.

3. Current result

mK Eπ Eππ(I=2) Eππ(I=0V ) Eππ(I=0)

lattice 0.35539(23) 0.19898(42) 0.41435(80) 0.3616(50) 0.3805(327)
MeV 490.44±0.32 274.59±59 571.8±1.1 499.0±6.9 525±45

Table 2: Meson spectrum in both lattice units and MeV. Measured on 87 configurations. The Eππ(I=0V )

column is the ππ(I = 0) energy without including vacuum diagrams.

By measuring 87 configurations spaced by 8 molecular-dynamic time units, we obtained the
meson spectrum as in Table (2). Using the Eππ value in Table (2) and Luscher’s quantization
condition [5], we can calculate the strong phase shifts:

δ2 = −0.1939(87) (radians) (3.1)

δ0 = 0.18(36) (radians) (3.2)

The ten weak matrix elements on lattice Mlat
i = 〈ππ(I = 0)|Qi|K〉(i = 1,2, · · · ,10) are also

calculated, each with the two quark, dimension 3 operator s̄γ5d subtraction:

Qsub
i = Qi−αis̄γ5d , (3.3)

with α chosen so that

〈0|Qsub
i |K〉= 0. (3.4)
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Because of the relative sizes of the matrix elements Mlat
i (i = 1,2, · · · ,10) and the perturbative

Wilson coefficients, Re(A0) is mostly determined by the second matrix element Mlat
2 , while Im(A0)

is mostly determined by the sixth matrix element Mlat
6 . We obtained the lattice matrix elements at

various K−ππ separations as shown in Table (3).

δ t Mlat
2 (×10−3) Mlat

6 (×10−3)

10 3.1(43) -25(11)
12 5.2(30) -27(10)
14 1.8(32) -16(10)

Average 3.4(24) -23.8(74)

Table 3: Matrix elements M2 and M6. They were obtained from 87 configurations, substantial more data
than was available at the time of presentation during the symposium.

By a rough estimation, we need to measure on 300 configurations in order to get the A0 with
less than 30% uncertainty.
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