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The rare kaon decays, K → π`+`− and K → πνν̄ , serve as ideal probes for the observation
of New Physics (NP) effects. To isolate NP contributions successfully, one needs to control
errors for Standard Model prediction from both short- and long-distance contributions. The RBC-
UKQCD collaborations have performed a successful exploratory study on the calculation of long-
distance contributions to the KL-KS mass difference, and are now developing necessary methods
to calculate long-distance contributions to rare kaon decay amplitudes. In this proceeding, we
will introduce the phenomenological background for rare kaon decays and describe the lattice
methodology to calculate the corresponding decay amplitudes.
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1. Introduction

Rare kaon decays, described by a flavor-changing-neutral-current process, played an important
role in the development of the Standard Model (SM). As a second-order electroweak interaction,
SM contributions to such decay amplitudes are highly suppressed, leaving rare kaon decays ideal
probes for the observation of New Physics effects.

Among various rare kaon decays, we mainly focus on two decay modes: K→ πνν̄ and K→
π`+`−, with a particular interest in long-distance contributions to the decay amplitudes. A proposal
to calculate rare kaon decay amplitudes using lattice QCD has been made in Ref. [1]. The method
to treat with a second-order electroweak amplitude on the lattice has been developed by Ref. [2] and
successfully applied to the lattice calculation of KL-KS mass difference [3, 4]. It is recently extended
to the evaluation of long-distance contributions to indirect CP violation parameter εK [5]. Based
on these studies, we have developed the lattice method to calculate rare kaon decay amplitudes for
both K→ πνν̄ and K→ π`+`−.

In this proceeding we briefly introduce the phenomenological background for K→ πνν̄ and
K→ π`+`− and describe on how to calculate corresponding decay amplitudes using lattice QCD.
Some technical issues involved with our lattice methodology are also discussed.

2. Phenomenological background

2.1 K→ π`+`− decays

Due to the soft Glashow-Iliopoulos-Maiani (GIM) mechanism, CP conserving decays K+→
π+`+`− and KS → π0`+`− are long-distance dominated. Via a one-photon exchange process,
amplitudes for K+ and KS decays can be written in terms of an electromagnetic transition form fac-
tor [6, 7]. The momentum transfer dependence of the form factor has been parameterized within
the framework of chiral perturbation theory [7], where unknown parameters (or low energy con-
stants) can be determined using the experimental data of the dilepton invariant-mass spectrum or
the branching ratio as inputs. As an alternative, lattice QCD can help to provide these parameters
for chiral perturbation theory. Particularly for KS decays, the transition form factor at zero momen-
tum transfer, aS, is estimated to be |aS| = 1.06+0.26

−0.21 for the electron and |aS| = 1.54+0.40
−0.32 for the

muon case [7]. However the sign of aS is still unknown due to the insufficiency of the experimental
data. It would be desirable if lattice QCD can determine the sign for aS.

For CP violating KL decays, the situation becomes more complicated. Relevant decay am-
plitudes receive three major contributions: 1) a short-distance dominated direct CP violation, 2) a
long-distance dominated, indirect CP violating contribution through KL→ KS→ π0`+`−, 3) a CP
conserving component which proceeds through two-photon exchange. Total CP violating contri-
butions to KL decay branching ratios, including 1), 2) and their interference, are given by [8]

Br(KL→ π
0e+e−)CPV = 10−12×

[
15.7|aS|2±6.2|aS|

(
Imλt

10−4

)
+2.4

(
Imλt

10−4

)2
]

Br(KL→ π
0
µ
+

µ
−)CPV = 10−12×

[
3.7|aS|2±1.6|aS|

(
Imλt

10−4

)
+1.0

(
Imλt

10−4

)2
]
. (2.1)
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Here λt =V ∗tsVtd where Vqq′ are standard CKM matrix elements. Since aS is a quantity of size O(1)
and λt takes the value Imλt/10−4 ≈ 1.34, the unknown sign of aS will cause a large uncertainty in
the determination of the branching ratio. A lattice QCD study may help to clarify it.

2.2 K→ πνν̄ decays

Different from K→ π`+`−, the K→ πνν̄ decays are known to be short-distance dominated.
Long-distance contributions below the charm scale are safely neglected in KL → π0νν̄ and are
small in K+→ π+νν̄ . The SM prediction for the K+→ π+νν̄ branching ratio is given by [9]

Br(K+→ π
+

νν̄) =
(

7.81+0.80
−0.71para±0.29theory

)
×10−11, (2.2)

with a 10% parametric uncertainty from SM inputs (Vcb: 56%, ρ̄: 21%, others 23%) and a 4% the-
oretical error with uncertainty coming from the long-distance contributions (δPc,u: 46%), higher-
order QCD and electroweak effects in the top quark contribution (Xt : 27%) and charm quark con-
tribution (Pc: 20%), and others (7%).

To make a precise SM prediction, the top priority is to have accurate CKM matrix elements
such as Vcb and ρ̄ . On the other hand, the long-distance contributions δPc,u are now the dominant
source of the 4% theoretical uncertainty. With the inclusion of δPc,u = 0.04± 0.02 from chiral
perturbation theory, the relevant branching ratio is enhanced by 6% [10]. Since only part of the
O(p4) contributions are estimated, Ref. [10] took the O(p2) result as the central value and attributed
to it a 50% error. Although the error is assigned conservatively, the ignorance of the relevant O(p4)

contributions opens the possibility that the long-distance contributions may be larger than expected.
A lattice calculation of long-distance contributions from first principles can help to reduce this
uncertainty.

Considering the fact that NA62 in CERN [11] plans to obtain O(100) total K+→ π+νν̄ events
in two years and make a 10%-precision measurement of the branching ratio, an accurate determi-
nation of the long-distance contribution to the K+→ π+νν̄ branching ratio is of importance.

3. Lattice setup

At the quark level, these rare kaon decay amplitudes can be induced by γ/Z-exchange and
box diagrams, containing up, charm and top quarks. For K→ π`+`− decays, γ-exchange diagrams
dominate the amplitude; for K→ πνν̄ , we need to evaluate the long-distance contributions to both
Z-exchange and the W -box diagrams.

3.1 γ/Z-exchange diagrams

In Minkowski space the non-local hadronic matrix element in γ/Z-exchange diagrams can be
written in terms of the form factor Fγ,Z

i (q2) through [7]

T γ,Z
µ (q2) = i

∫
d4x〈π(pπ)|T{Jγ,Z

µ (0)HW (x)}|K(pK)〉

= Fγ,Z
1 (q2)q2(pK + pπ)µ −Fγ,Z

2 (q2)(m2
K−m2

π)qµ , (3.1)
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Figure 1: Samples of contractions contributing to γ/Z-exchange diagrams. There are totally 22 types of
diagrams. Here we just select three: WK` for connected, Wdis. for disconnected and Sloop for loop diagrams.

where q = pK − pπ . Here Jγ,Z
µ are the electromagnetic and neutral weak currents associated with

the photon and Z-boson. The |∆S|= 1 effective Hamiltonian HW (x) is given by [1]

HW =
GF√

2
V ∗usVud ∑

i=1,2
Ci(Qu

i −Qc
i ),

Qq
1 = s̄αγ

µ(1− γ5)qβ q̄β γµ(1− γ5)dα , Qq
2 = s̄αγ

µ(1− γ5)qα q̄β γµ(1− γ5)dβ , (3.2)

with Ci the corresponding Wilson coefficients. For γ-exchange diagrams, the Ward-Takahashi iden-
tity guarantees Fγ

1 (q
2) = Fγ

2 (q
2). Note that the Fγ,Z

2 term does not contribute to the amplitude.
Therefore one can simply write decay amplitudes (up and charm quark contributions only) as [7]

A(K→ π`+`−)γ = −e2Fγ

1 (q
2)(pK + pπ)

µ ū`γµv`,

A(K→ πνν̄)Z =
GF

2
√

2
FZ

1 (q2)q2(pK + pπ)
µ ūνγµ(1− γ5)vν . (3.3)

Depending on the integration range, T γ,Z
µ (q2) can be naturally split into two parts [12]

T γ,Z
µ (q2) = ∑

ns

〈π(pπ)|HW (0)|ns〉〈ns|Jγ,Z
µ (0)|K(pK)〉

Ens−Eπ + iε
−∑

n

〈π(pπ)|Jγ,Z
µ |n〉〈n|HW |K(pK)〉

EK−En + iε
, (3.4)

where {|n〉} and {|ns〉} stand for complete sets of non-strange and strange states.
In a lattice calculation a similar expression can be obtained by evaluating the 4-point correla-

tion function∫ Tb

−Ta

dt 〈φπ(~pπ , tπ)T [J
γ,Z
µ (0)HW (t)]φ †

K(~pK , tK)〉 ≡
√

ZK
e−EK |tK |

2EK
T γ,Z

E
√

Zπ

e−Eπ tπ

2Eπ

(3.5)

with φπ and φK interpolating operators for the pion and kaon and

T γ,Z
E = ∑

ns

〈π(pπ)|HW (0)|ns〉〈ns|Jγ,Z
µ (0)|K(pK)〉

Ens−Eπ

(
1− e(Eπ−Ens )Tb

)
−∑

n

〈π(pπ)|Jγ,Z
µ (0)|n〉〈n|HW (0)|K(pK)〉

EK−En

(
1− e(EK−En)Ta

)
(3.6)

Samples of diagrams for the 4-point correlation function are given in Fig. 1. Note that the second
term in Eq. (3.6) suffers from exponential growing contamination at large Ta if En < EK . For the
γ-exchange diagrams, we need to remove contamination from |n〉 = |π〉, |3π〉. For Z-exchange
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diagrams including both vector and axial vector currents, additional contamination from |n〉= |2π〉
must be removed. (Here, |n〉 = |0〉 does not contribute since we are only intested in K+ decays.)
This is a generic feature of non-local matrix elements in the second-order weak interaction. A
similar situation happens with the KL-KS mass difference [3, 4].

3.2 W -box diagrams

In K+→ π+νν̄ decays, in addition to the Z-exchange diagrams, we also need to evaluate the
W -box diagrams. The starting point is a non-local matrix element [10]

TW,` = i
∫

d4x〈πνν̄ |T{O∆S=1(x)O∆S=0(0)}|K〉u−c (3.7)

where u−c indicates the GIM cancellation. The operators O∆S=1 and O∆S=0 are induced by replac-
ing each W -boson exchange by an effective four-fermion operator

O∆S=1 = s̄γ
µ(1− γ5)q ν̄γµ(1− γ5)`, O∆S=0 = ¯̀γµ(1− γ5)ν q̄γµ(1− γ5)d, (3.8)

with q = u,c and `= e,µ,τ .
Separating the hadronic and leptonic parts in TW,`, we have

TW,` = i
∫

d4x

Hαβ (x): hadronic part︷ ︸︸ ︷
〈π(pπ)|T{s̄γα(1− γ5)q(x) q̄γβ (1− γ5)d(0)}|K(pK)〉

× ū(pν)γ
α(1− γ5)S`(x,0)γβ (1− γ5)v(pν̄)e−ipν x︸ ︷︷ ︸

ū(pν )Γαβ (x)v(pν̄ ): leptonic part

. (3.9)

where u(pν) and v(pν̄) are Dirac plane-wave spinors and S`(x,0) the lepton propagator. Because
of the chiral property of the spinors ū(pν) and v(pν̄), the can only enter the final result is the
combination TW,` = T µ ū(pν)γµ(1−γ5)v(pν̄). Assuming massless neutrinos, the Lorentz structure
of T µ can be further simplified as T µ = F`(pK , pν , pν̄)pµ

K . Thus, we have

TW,` = i
∫

d4xHαβ (x) ū(pν)Γ
αβ (x)v(pν̄) = F`(pK , pν , pν̄)ū(pν)/pK(1− γ5)v(pν̄). (3.10)

It can be shown that the form factor F`(pK , pν , pν̄) can be obtained through

F`(pK , pν , pν̄) =
i
∫

d4xHαβ (x)Tr[Γαβ (x)/p
ν̄
/pK(1− γ5)/pν

]

Tr[/pK(1− γ5)/pν̄
/pK(1− γ5)/pν

]
. (3.11)

Using F`(pK , pν , pν̄) the decay amplitude for the W -box diagrams can be written as

A(K→ πνν̄)W = G2
FV ∗usVud ∑

`=e,µ,τ
F`(pK , pν , pν̄)pµ

K ū(pν)γµ(1− γ5)v(pν̄). (3.12)

In a lattice calculation, the hadronic matrix element Hαβ can be calculated by constructing a
4-point correlation function. The leptonic propagator can be implemented using a lattice fermion
formulation, such as domain wall or overlap fermion. Following the steps described above one can
determine the decay amplitude. The quark and lepton contractions for TW,` are given in Fig. 2. In
the type 1 diagram, the intermediate state is given by a single lepton state |`〉 or hadronic states
carrying no flavor quantum numbers such as |`,2π〉. The type 2 diagram is mediated by the states
of |`,π〉, |`,3π〉, · · ·. As in the case of the γ/Z-exchange diagrams, if an intermediate state energy
is lower than the initial kaon energy, then exponential growing contamination needs to be removed.
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Figure 2: Quark and lepton contractions for W -box diagrams.

4. Technical issues

4.1 Short-distance divergences on the lattice

In the calculation of γ/Z-exchange diagrams, when the Jγ,Z
µ operator approaches to the HW

operator in the Sloop diagram in Fig. 1, a potential quadratic divergence is allowed by dimensional
counting. Ref. [1] pointed out that in γ-exchange diagrams, if a conserved vector current is used,
then an external momentum factor q2δµν − qµqν can be extracted and correspondingly, the dia-
gram is reduced to be logarithmic divergent. Further GIM mechanism cancels this logarithmic
divergence. Thus no lattice to continuum matching is required.

The situation is different for Z-exchange diagrams. The non-zero quark mass mq, q = u,c
breaks the chiral symmetry explicitly. There exists another allowed tensor structure m2

qδµν , which
reduces the degree of divergence by 2 but now the GIM mechanism cannot cancel the logarithmic
divergence. So if either a conserved or local axial vector current is used, after GIM cancellation,
we need to deal with a similar logarithmic divergence.

A similar situation happens with the W -box diagrams, which appear to be quadratically diver-
gent by dimensional counting. The V-A structure of the weak current and GIM mechanism reduce
the divergence to logarithmic. (This is different from the KL-KS mass difference where the double
GIM cancellation makes W -box diagrams ultraviolet finite [3].)

In both Z-exchange and W -box diagrams, the short-distance divergence is cut off by the lattice
spacing, rather than the physical Z or W mass. This can be corrected by removing the short-distance
part of the lattice result and adding back the correct, continuum short-distance contribution through

A−Alat
SD +Acont

SD =
∫

d4x〈π|T{O1(x)O2(0)}|K〉−〈π|Clat(µ2)OSD|K〉+ 〈π|Ccont(µ2)OSD|K〉(4.1)

where O1,2 stands for JZ
µ , HW (Z-exchange) and O∆S=1, O∆S=0 (W -box). The short-distance op-

erator OSD is given by s̄γµ(1− γ5)d ν̄γµ(1− γ5)ν . The Wilson coefficient Clat(µ2) on the lattice
can be determined using the non-perturbative Rome-Southampton RI/MOM approach [13], while
Ccont(µ2) in the continuum can be calculated perturbatively.

4.2 Finite-volume effects

Concerning the second-order weak amplitude where the intermediate state involves multiple
particles, Refs. [2, 14] have given the detailed formulae to evaluate the finite-volume (FV) correc-
tion to the KL-KS mass difference. The same approach can be used to determine FV effects in rare
kaon decay amplitudes.

Important information from the FV study is that the power-like, FV correction is related to the
square of the on-shell amplitude A(K→ {n}), where {n} stands for n particles in the intermediate

6
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states. If the number of particles increases, we expect that the FV correction is suppressed by a
phase-space factor. The decay rate Γ(KL → 3π)/Γ(KS → 2π) = 5.6× 10−3 suggests that the FV
correction induced by the on-shell 3π-state may be∼ 100 times smaller than that from the 2π-state.

Thus, we focus on the 2-particle state. In γ-exchange diagrams, we consider a matrix el-
ement 〈π(pπ)|Jγ

µ |π(p1)π(p2)〉, which carries the possible Lorentz factor pπ,µ , p1,µ , p2,µ and
εµνρσ pν

π pρ

1 pσ
2 . The εµνρσ term does not contribute to the decay amplitude because after the mo-

mentum integral, there are only two independent momenta in pπ and q = pK − pπ and an εµνρσ

structure cannot be constructed. The terms proportional to pπ,µ , p1,µ and p2,µ vanish as well due to
parity symmetry. In Z-exchange diagrams, since the axial vector current is involved, the 2π-state
contributes to the decay amplitude. In the W -box diagrams, a 2-particle state |`,π〉 appears in the
type 2 diagram in Fig. 2. For these cases FV corrections must be estimated properly.

5. Conclusion

With the development of the method [2], it is now possible to calculate long-distance contribu-
tions to the second-order weak amplitude directly using lattice QCD. Rare kaon decays are such an
example [1, 12]. So far we have discussed the phenomenological background for K→ π`+`− and
K→ πνν̄ and introduced the lattice methodology to calculate corresponding decay amplitudes. For
more detailed methods and numerical results, we refer interested readers to our forthcoming papers.

Acknowledgments: N.H.C and X.F. were supported in part by US DOE Grant No.DE-SC0011941
and A.P. and C.T.S. by UK STFC Grants ST/G000557/1.
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